

Proceedings of MARTEC 2010
The International Conference on Marine Technology
11-12 December 2010, BUET, Dhaka, Bangladesh

393

A PRACTICAL APPROACH TO TRIANGULATION OF PLANAR SURFACE

Md. Shahidul Islam, Naem-Ibne-Rahman and Md. Mezbah Uddin

Department of Naval Architecture and Marine Engineering,
Bangladesh University of Engineering and Technology, Dhaka.
E-mail: shahid113@gmail.com, naem_nir@hotmail.com

ABSTRACT

A triangular mesh generation algorithm is presented in this paper. Based on this procedure a fully automatic
object oriented program in C++ language is developed for any arbitrary 2D geometry. The program generates
unstructured triangular surface mesh which can be used for finite element analysis. The program gives mesh
output in a script file format for viewing in AutoCAD. Importance is given to the quality of the triangles
generated so that better results can be achieved by the finite element analysis. A very practical approach has
been taken in this regard. A number of example meshes are presented to show the effectiveness of the algorithm
and program.

Key words: Triangular mesh generation, C++, Object oriented programming, Finite Element Method,
Unstructured surface mesh.

1. INTRODUCTION

Finite element method (FEM) is a powerful tool for
the numerical solution for a wide range of engineering
problems. Applications range from deformation and
stress analysis of automotive, aircraft, building and
bridge structures to field analysis of heat flux, fluid
flow, magnetic flux, seepage and other flow problems.
FEM allows detailed visualization of where structures
bend or twist, and indicates the distribution of stresses
and displacements. FEM software provides a wide
range of simulation options for controlling the
complexity of both modeling and analysis of a
system. FEM allows entire designs to be constructed,
refined, and optimized before the design is
manufactured.

In this method of analysis a complex region
defining a continuum is discretized into simple
geometric shapes called finite elements. The material
properties and the governing relationships are
considered over these elements. An assembly process,
duly considering the loading and constraints, results in
a set of equations. Solution of these equations gives
the approximate behavior of the continuum.

The current research basically develops a program
to discretize a problem domain into triangular shaped
finite elements. Element generation is commonly
known as mesh generation. Triangles have been
chosen as the mode of discretization simply because it
is the most elementary geometrical shape when it
comes to mesh generation. Again, if the number of

total triangles is even, the mesh can be converted in to
quadrilateral mesh.

Automatic unstructured mesh generation is a
relatively new field. Within its short life span it has
tremendous advancement in many diverse fields.
There are a number of triangulation techniques. Of
these the Delaunay method [1] is one of the most
popular techniques of triangular mesh generation. The
Delaunay criterion in itself is not an algorithm for
generating a mesh. It merely provides the criteria for
which to connect a set of existing points in space. As
such it is necessary to provide a method for
generating node locations within the geometry. A
typical approach is to first mesh the boundary of the
geometry to provide an initial set of nodes/points. The
domain bounded by boundary nodes is then
triangulated according to the Delaunay criterion
which involves Voroni diagram [2]. In two dimensions
the Voroni diagram of a group of vertices divides two-
dimensional space into regions bound by straight line
segments. Each region or Voroni cell belongs to one
vertex. Although the Delaunay criterion has been
known for many years, it was not until the work of
Charles Lawson [3] and Dave Watson [4] that the
criterion was utilized for developing algorithms to
triangulate a set of vertices. The criterion was later
used in developing meshing algorithms by Timothy
Baker [5] at Princeton, Nigel Weatherill [6] at
Swansea, Paul-Louis George [7] at INRIA among
others.

Another very popular triangular mesh generation
algorithms is the advancing front, or moving front

Proceedings of MARTEC 2010

394

method. It was first presented by Lo in 1985 [8]. He
presented a new mesh generation algorithm that
initially defines the boundary of the domain by a set
of line segments, the initial advancing front. All nodes
are generated within the domain bounded by the
initial advancing front and valid triangular elements
are then formed from the line segments and interior
nodes. Each element is generated by joining the end
nodes of a line segment to a third node with the
condition that it does not intersect the advancing
front. The front is then updated and the element
creation process goes on as long as the front is not
empty. Peraire et al [9] presented a modified version
of advancing front method in 1987. Most of the
subsequent advancing front method research has been
based upon Peraire’s algorithm.

As the triangulation algorithms discussed above are
very complicated, a very simple approach is presented
in this paper which can generate good quality
triangles. The developed program based on this
method requires the boundary nodes of the problem
domain in counter clockwise direction as input. The
main operation then includes selection of the
protruding point, generation of triangles from the
boundary nodes, insertion of internal points in
primary triangles satisfying the rules of triangulation,
generation of triangles from the inserted points, edge
swapping and finally the resultant triangles are
smoothed using Laplacian smoothing [10] technique.
After completing these operations the final resulting
mesh is presented in a script file format for viewing in
AUTOCAD software. Nodes and points represent
same entity in this study.

2. THE PROPOSED TRIANGULATION
PROCEDURE

2.1 Properties of Triangulation:
Irrespective of the technique followed for the

triangular mesh generation, the resulting triangulation
must follow some rules for it to be a correct one.
These are rules derived from simple geometry which
gives the relation between number of vertices, edges
and triangles generated. If the number of triangles,
edges, internal edges, boundary points and internal
points are represented by |T| , |E|, |Ei|, |Pb| and |Pi|
respectively, then these properties are:

|T| = 2 |Pi| + |Pb| - 2
|E| = 3 |Pi| + 2 |Pb| - 3
|Ei| = 3 |Pi| + |Pb| - 3

2.2 The Problem Domain
The triangulation process starts with the definition

of the problem domain. The boundary nodes of the

domain are given in the anti clockwise direction. Thus
by joining these boundary nodes the geometry of the
problem domain will be established.

Since the geometry is defined by boundary points
and lines joining those points, the resultant domain
can be of two types: (1) convex region and (2)
concave region (Figure 1). A convex region is one in
which all the interior angles are not greater than 180°.
On the other hand a region is said to be concave if any
of its interior angles are greater than 180°. This
program is capable of triangulating both the convex
and concave regions. For our current analysis the
problem domain does not contain any hole.

 (a) Convex region (b) concave region

Figure 1. Problem domain

2.3 Steps of Triangulation
Our presented triangulation has five steps and these

are as follows:
Initial triangle generation
Internal point insertion
Further triangulation
Edge-swapping
Laplacian smoothing

All these steps are described below.

2.3.1. Initial Triangle Generation
In this step, initial triangles are formed from the

given boundary nodes. If there is ‘n’ number of
boundary nodes then the number of initial
triangles will be ‘n-2’. In order to understand the
initial triangle generation process first it is important
to be familiar with the concept of ‘the Proper triangle’
and ‘the Protruding Point’.
Proper Triangle:

The vertices of any initial triangle will be three of
the input boundary nodes. A proper triangle is defined
as one that does not contain any other boundary nodes
except for its three vertices. The concept is illustrated
in Figure 2.

 (a) Improper triangle (b) Proper triangles

Figure 2. Proper and improper triangles

Proceedings of MARTEC 2010

395

It is worth mentioning that improper triangles can
only be produced in concave domains.
Protruding Point:

Protruding points are defined as the points that
produce proper triangles within the limits of a defined
domain. If Pi is a protruding point and Pi-1 and Pi +1 are
points before and after Pi respectively, then the
triangle produced by Pi is Ti ={ Pi, Pi-1, Pi+1 }. The
condition for a point Pi to be a protruding point is:

The interior angle of the problem domain at Pi must
be less than 180°.

Ti must not contain any other boundary node of the
problem domain other than Pi , Pi-1 and Pi+1.

The above mentioned conditions determine whether
a point is a protruding point or not. Using the proper
triangle and protruding point concept the initial
triangulation is done. Figure 4 shows the resultant
mesh of the region bounded by points A, B, C, D and
E.

2.3.2 Internal Point Insertion
The next step in the triangulation process is the

internal point insertion. Internal points are important
because the initial triangles may be too large or may
have too small an angle to work with. Points are
generated at the centre of each initial triangle (Figure
3).

Figure 3. Internal point insertion for the domain
shown in Figure 2(b).

2.3.3 Further Triangulation

In this step, the initial triangles are further
triangulated. The internal point in each of the initial
triangles will divide the parent triangle into three new
separate triangles by joining the three vertices to the
internal point (Figure 4).

Figure 4. Further triangulation of the domain shown
in Figure 2(b)

2.3.4 Edge Swapping
 Once triangulation for the second time is

done, there will be no more division of triangles. But
the triangles generated at this point may not look to be

of good quality. A quality triangle is one that has
edges of almost equal dimension and has internal
angles of as close to 60° as possible. The triangles
generated so far thus have some room for
improvement. For some of the initial triangles it is
possible to increase the minimum internal angles by
the edge-swapping operation. So far the prominent
geometrical shape in this paper has been triangles. But
to be able to apply this technique the quadrilateral
shape needs to be considered. The technique is
explained below.

Quadrilateral Generation:
For edge swapping it is necessary to generate

quadrilaterals from the triangles that have been
generated so far. This is not a very tough job since
every two adjacent triangles form a quadrilateral
where the common edge is a diagonal of that
quadrilateral.

Even though every two triangle will form a
quadrilateral, not all the quadrilaterals present in the
domain will need edge swapping. In fact edge
swapping will not be possible for quadrilaterals
having an internal angle greater than or equal to 180°.
Thus only the quadrilaterals having all four internal
angles less than 180° will be suited for edge
swapping. The unsuitable ones will have to be left
unchanged.

 (a) A suitable quadrilateral. (b) Not suitable for edge swapping
Figure 5. Suitability of quadrilaterals for edge

swapping

In Figure 5(a), the quadrilateral ABCD is
constructed by the triangles ABC and ADC with AC
as the common edge. Here all the angles A, B, C and
D are less than 180°. Thus ABCD is suitable for the
edge swapping operation. In case of Figure 5(b)
triangles EFH and FGH makes quadrilateral EFGH.
But here the angle H is greater than 180°. So EFGH
will be skipped from the edge swapping operation.
The procedure of edge swapping is shown by using
the quadrilateral in Figure 5(a).

As discussed above, when a quadrilateral is
constructed from two adjacent triangles, the common
edge acts as a diagonal of that quadrilateral. The
Figure 6 (a) shows the six internal angles of the
triangles ADC and ABC. It is seen that the smallest
angle in this case (X1) is equal to 31°. If the diagonal
of the quadrilateral is swapped as in Figure 6(b), the
smallest angle X2 becomes 20°. The condition for
edge swap is X2 must be greater than X1. The whole
idea behind the edge swapping is to increase the

Proceedings of MARTEC 2010

396

quality of the triangles by increasing the minimum
internal angles in the quadrilaterals. Thus edge
swapping is not suitable for quadrilateral ABCD.

(a) Option 1 (b) Option2
Figure 6. Angle checking for edge swapping

Another important thing that should be kept in
mind during programming is that edge-swapping is an
iterative process. Each time a diagonal is swapped, the
process should be reset for the whole domain again.
Because swapping of a single edge changes a
considerable number of internal angles in the domain.
By iteration process one point will come when none
of the edges in the domain will need swapping. That
will be the end point of the edge swapping process.

For the domain in Figure 2(b), the result after edge-
swapping will be as Figure 7.

 (a) Before swapping. (b) After swapping.

Figure 7. Example of edge swapping

2.3.5 Laplacian Smoothing
After finishing the edge swapping process, the

problem domain is now discretized into a finite
number of triangles. Thus the domain is ready for
finite element analysis. But the quality of the resulting
triangles may not still be satisfactory enough and it
has been discussed before that, poor quality elements
can give poor accuracy in results. Hence one final step
is required to complete the triangulation. Mesh
smoothing and refinement is a well known method to
improve the quality of a mesh. These methods adjust
the positions of the points in the mesh while
preserving its topology. Laplacian smoothing [10] is
the most popular method for node-based mesh
smoothing. In an iterative manner, it repositions the
points of the mesh by moving each interior node to
the geometric centre of its neighbors. It is often used
because it is computationally inexpensive and easy to
implement.

In this smoothing process the position of a point
and its neighboring points are taken into

consideration. The neighboring points of a certain
point will be the points that share the same edge with
that certain point. Each internal node (not the
boundary ones) is moved to a new position given by
the average of the neighboring nodes.

Figure 8 (a) shows a domain just after triangulation
and Figure 8 (b) shows the same domain after the
application of smoothing process.

 (a) Before smoothing (b) After smoothing

Figure 8. Laplacian smoothing

3. THE PROGRAM
As stated before, the triangulation is done in this

study using object oriented programming. Object
oriented programming approaches the problem in a
very organized manner. As a result it is very easy to
construct, maintain and modify for future
developments. It is also easier to understand
compared to other programming approaches. The
programming language used here is C++ as it is a very
well known object oriented programming language
for its relative simplicity and compactness in nature.

Some attributes of the program are given below:

Source files:
i. Triangulation.cpp which contains the

function ‘main()’
ii. Point.cpp
iii. Line.cpp
iv. Triangle.cpp
v. Function.cpp

Header files:
i. Point.h: This contains the class Point. The

functions of this class mainly define a point by
the values of x and y coordinates.

ii. Line.h: This header file contains the class
Line. The functions define lines by the points it
contain. There are also functions that can
determine the middle point of a certain line and
the length of the line etc. There is also a bool
function that can compare between two lines to
say if the two lines are infact the same line or not.

iii. Triangle.h: This contains the class
Triangle. It has functions that define a
triangle by its three vertices and the three edges.
It also contain function to determine the centre of
the triangle and bool function that can

Proceedings of MARTEC 2010

397

determine the common edge shared by two
adjacent triangles.

iv. function.h: This header file includes
functions that are needed for other general
purposes of the program. The most important of
these is a function that determines whether an
input domain is a convex or a concave one.
Another important function determines whether a
certain point lies within a triangle or outside it.

First the input data are typed in the text file
input.txt. The program stores these data in a vector
named point_vector. Then initial triangles are
generated and the protruding points are stored in
a_point_vector. Upon completion of the initial
triangle generation process all the initial triangles are
stored in triangle_vector. Then interior points
are inserted in each member of the
triangle_vector and the internal points are
inserted in updated_point_vector. Next
further triangulation is done and the resulting triangles
are kept in updated_triangle_vector. Then
edge-swapping and smoothing operation are
conducted in updated_triangle_vector
consequently updating the triangles in it. Finally the
results are scripted in the file output.scr in a
format that enables the resulting triangulation to be
viewed in AutoCAD.

4. RESULTS
In this section some example mesh generated from

the given boundary nodes are presented. Model 1, 2
and 3 shows meshing of concave regions. The
variations of domain also have variation in point
distances, especially in model 3. The resulting mesh
shows the effectiveness of the program for these types
of domains,

 (a) Problem domain (b) Meshed domain

Figure 9. Model 1

 (a) Problem domain (b) Meshed domain

Figure 10. Model 2

 (a) Problem domain (b) Meshed domain

Figure 11. Model 3

Model 4, 5, 6 and 7 represent convex regions with
variations so that the capability of the program can be
tested for different cases.

 (a) Problem domain (b) Meshed domain
Figure 12. Model 4

 (a) Problem domain (b) Meshed domain

Figure 13. Model 5

 (a) Problem domain (b) Meshed domain
Figure 14. Model 6

 (a) Problem domain (b) Meshed domain
Figure 15. Model 7

Proceedings of MARTEC 2010

398

5. CONCLUSION
At present, mesh generation is a very widely

studied topic. Lot of researches is taking place on this
subject. There are numerous methods and modes of
mesh generation being developed recently. This
research is just simply one of those efforts. The main
aim of this research was to develop a simple mesh
generation algorithm in a way that would be easy to
understand to everyone who has simply the
knowledge of elementary geometry.

This program is a work-in-progress. The aim from
the beginning has been to develop our very own FEM
software. Even in the triangulation, there is still a lot
of room for improvement. For example, after the
initial triangulation, if the triangles are first divided
into quadrilaterals and then again the quadrilaterals
are split into triangles and at last using smoothing
may be an alternate procedure. Anyway, a lot of
examples are presented in the result section and the
quality of the mesh is reasonably good. The future
plan is to develop a program that can surface mesh a
three dimensional body which later can be discretized
into hexahedrons [11]. The solid analysis will then be
possible.

REFERENCES

[1] Delaunay, Boris, N., “Sur la Sphere” Vide.

Izvestia Akademia Nauk SSSR, VII Seria,
Otdelenie Matematicheskii iEstestvennyka Nauk,
vol 7, pp.793-800 (1934) .

[2] Voroni, G., “ Nouvelles applications des parameres

continues a la theorie des formes quadratiques.
Recherches sur les parallelloedres primitives”,
Journal Reine angew.Math, 134, (1908).

[3] Lawson, C. L. ,“Software for C1 Surface

Interpolation”, Mathematical Software III,
pp.161-194 (1977).

[4] Watson, David F., “Computing the Delaunay

Tesselation with Application to Voronoi
Polytopes”, The Computer Journal, vol 24(2)
pp.167-172 (1981)

[5] Baker, Timothy J., “Automatic Mesh Generation

for Complex Three-Dimensional Regions Using a
Constrained Delaunay Triangulation”,
Engineering with Computers, vol 5, pp.161-175
(1989).

[6] Weatherill, N. P. and Hassan, O., “Efficient Three-

dimensional Delaunay Triangulation with
Automatic Point Creation and Imposed Boundary
Constraints”, International Journal for Numerical
Methods in Engineering, vol 37, pp.2005-
2039(1994).

[7] George, P. L., Hecht, F. and Saltel, E., "Automatic
Mesh Generator with Specified Boundary",
Computer Methods in Applied Mechanics and
Engineering, North-Holland, vol 92, pp.269-288
(1991).

[8] Lo, S.H.,”A new mesh generation scheme for

arbitrary planar domains”, International Journal
for Numerical Methods in Engineering, 21(8):
1403-1426, 1985.

[9] Peraire, J., Peiro, J, Formaggia, L., Morgan, K.,

Zienkiewicz, O.C., “Adaptive remeshing for
compressive flow computations”, Journal of
Computational Physics, 72(2): 449-466,1987.

[10] Hansbo, P., “Generalized Laplacian smoothing of

unstructured grids”, Communications in
numerical methods in engineering, vol. 11, 455-
464 (1995).

[11] Islam, Md. Shahidul, “Whisker weaving based
plastering algorithm-A new approach to
hexahedral mesh generation”, Doctor of
Engineering Dissertation, Yokohama National
University (2005).

