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The paper is presented on the development of a designer friendly hull form parameterization and its coupling 
with a local and a global optimization algorithm: the well known Sequential Quadratic Programming (SQP) 
and the more recent evolutionary Particle Swarm Optimization (PSO). These two algorithms are representative 
of classes with rather opposite characteristics (derivative–based and derivative–free, respectively) and their 
relative performances in solving some typical ship design optimization problem will be discussed in the paper. 
Following a well known naval architect’s design practice, a parametric modification tool is developed for 
modifying the ship’s geometry. The original geometry can be easily deformed by direct selection of some 
standard design parameters and useful information about the effect of the changing in the parameters are 
immediately obtained and visualized. At the same time, design parameters are assumed as design variables in 
the formulation of the optimization problem. In the examples, both potential flow and RANS solvers have been 
used. Numerical results for both single and multi-objective problems are presented. 

 
1. INTRODUCTION 

Simulation Based Design (SBD) is an 
emerging engineering tool to deal with 
complicate optimization problems which come 
out in diverse technical sectors, ship 
hydrodynamics included. The developments in 
CFD and computer power offer to the design 
engineers the chance for a more integrated and 
more frequent use of SBD in the ship design 
process. 
The fundamental elements of SBD in the ship 
design involve numerical solver, optimization 
technique and geometry modeling and modification. 
Several advanced optimization techniques are 
introduced and applied: multi objective global 
optimization [1-4], variable-fidelity approach [3] and 
multi-disciplinary design optimization [5]. RANS 
solver [2-3, 6-8] and potential flow solver [1, 9-15] 
are used for the numerical solver. Various hull form 
modeling and manipulation methods are introduced: 
Point manipulation or vertex control [7, 11, 14, 16, 
17], perturbation surfaces generated by geometric 
modification functions such as B-spline definition and 
Bezier patch [3, 8, 13, 18] and parametric modeling 
[19-22].  
However, arguably, these methods are not as 
generally accepted or widely used in practical 
ship design as the optimization community 
initially hoped. The explanation is not 
straightforward. It is certainly true that the 
consideration of a number of different problems 
is required: robust and automated grid generation 
and manipulation, the need to account for 

complex, real-industrial constraints, the 
difficulty of generating the objective function 
values computed by solving Partial Differential 
Equations (PDE) to number a few. 
But a more basic point is the parameterization of 
the problem (which has to be as familiar as 
possible to the ship designer), an issue that must 
be overcome before SBD can make a widespread 
impact on the practice of ship design, but this 
doesn’t seems to be the fundamental point.  
The potential benefits and pay-offs of the impact 
of SBD on the ship design process are so great, 
however, that despite the damping effects of 
reality on the immediate expectations, research 
on SBD has continued, yielding promising results 
and revealing specific new challenges and 
directions of research, which are reflected in 
several open literature[1, 2, 17, 19, 20] 
In the paper a designer hull form 
parameterization is presented and tested by 
coupling it with advanced local and global 
optimization algorithms. As optimization 
algorithms, we choose to implement the 
Sequential Quadratic Programming (SQP, e.g. 
Rao [23]) and the Partial Swarm Optimization 
(PSO, e.g. Pinto et al. [1]) as representative of 
algorithms with rather opposite characteristics, 
and their relative performances are discussed. 
 

2. PROBLEM FORMULATION AND SBD 
ENVIRONMENT 
 The mathematical formulation of the 
optimization problem follows that of a Nonlinear 
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Programming (NLP) problem: all the design 

variables Nxxx ,,, 21   constitute a vector 
T

Nxxxx ),,,( 21  belonging to a subset  of the 

N-dimensional real space N , that is 
Nx   (upper i

ux and lower  bounds i
lx are 

typical enforced onto the design variables), 
satisfying also some auxiliary condition like 

0)( xh  and/or 0)( xg . The objective of the 

optimization f under the equality and inequality 
constraints ( h  and g ) are functions of the 

variables x  and of the state of the system u  . In 
its general form, the constrained NLPs problem 
is to find the particular vector x~ in the subset   
which solves the following: 
 

))(,(min xuxf      T
Nxxxx ),,,( 21              (1) 

Nx   
 subject to 

,0)( xh j
        Mj ,,1   

0)( xg j
        Mj ,,1         

i
u

i
l xxx       Ni ,,1  

By solving a system of PDE of the general form 
0))(,( xuxA , the physical state of the system is 

obtained. To this aim, the use of some numerical 
tool - the first constitutive element of the SBD 
frameworks - to solve the system ))(,( xuxA  and 

evaluate the current design x  is necessary. If the 
function used to define the optimization problem 
is of fluid dynamic nature, as in our case, the 
step requires the evaluation of the design x  via a 
CFD solver, a process which is itself 
computationally intensive. Within a standard 
optimization algorithm - the second fundamental 
element of a SBD - the solution of these 
differential equations is required at each iteration 
of the algorithm. In addition to these two 
elements, a third one is necessary to complete a 
SBD environment: a geometry modelling method 
to bi-univocally provide a link between the 
design variables and a body shape. When the 
analysis tools is based on the solution of a PDE 
on some volume grid around a complex geometry, 
this task is not trivial and often requires large 
attention. The flexibility of this element may 
greatly affect the freedom of the optimizer to 
explore the design space and also the variety of 
produced shapes. 
 

3. THE ADOPTED PARAMETERIZATI
ON APPROACH 

Following the classical naval architect’s 
approach as well as office design practice, an 
user-friendly parametric modification tool is 
adopted for modifying the ship’s geometry.  

Among the large number of methods available in 
principle to generate (and change!) a hull form, 
ship designers, historically, are interested in 
systematic variations of some general global 
parameter. The major benefit of this classical 
parametric modification approach is that the 
original ship geometry can be easily deformed by 
direct selection of a limited number of well 
known design parameters. As a consequence, 
useful information about the effect of the 
changing in the parameters are immediately 
obtained, and easily visualized and understood. 
At the same time, these design parameters can be 
considered as design variables in the formulation 
of an optimization problem. These parameters are 
then varied systematically one by one, keeping 
constant all the others, and the ship performances 
are eventually evaluated with some easy tool to 
extract design sensitivities.  
For a number of reasons, this is not the approach 
followed by most of the current generation of 
optimization codes. The geometrical 
manipulation modules of these codes are indeed 
typically based on CAD systems (or CAD 
emulators) and hence make use of mathematical 
surfaces instead, i.e. describing the ship surface 
based on NURBS or splines patches, with a 
limited number of control points, freely 
adjustable by the designer, in order to obtain the 
required hull shape. As a consequence, the 
changes of the main hull parameters are 
computed a posteriori, and they are not the direct 
output of the code.  
Moreover, a single design variable has typically 
an influence on more hull parameters, so that the 
relation between the changes in the hull (from 
the designer standpoint) and the benefit in 
performances, is – at least – unclear.  
This paper, somewhat, goes back to a practical 
hull form design approach, in which the hull 
parameters are directly the variables of the 
optimization problem, and the parametric 
modification is fully integrated with both the 
geometry modification module and the CFD 
analysis.  
The initial hull surface is represented using B-
spline surfaces (to generate a grid for the CFD 
solver) and then design parameters by use of 
modification(additive) functions are adopted for 
the hull modification to force finally that changes 
back onto the CFD grid. 
The initial hull surface is represented by using 
the following B-spline surfaces:  
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where the jiB ,  are the vertices of a polygon net, kiN ,

and ljM ,  the B-spline basis function in the bi-

parametric  u  and v  directions, respectively.  
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The parametric modification function is superimposed 
on the initial hull )( oldH  to obtain modified 

geometry )( newH : 

                                        
)()()(),,(),,( ztysxrzyxHzyxH oldnew   (3)  

 
The three parametric modification functions ( sr, and 

t  ) are polynomial functions defined along the 
zyx ,,  direction, respectively. The design parameters 

for optimization can be changed using the functions 
and the modified geometry can be obtained using the 
perturbation with specific direction depends on design 
parameters. In this paper,   

(I) sectional area curve (SAC),  
(II) section shape and  
(III) bulb shape  

are used as design parameters of fore-body hull 
in Table 1.  
 
This parametric modification approach can also 
be applied to multi-block grids or unstructured 
grid because the modification functions are based 
on its position.  The smoothness is guaranteed 
because the modified geometry is constricted by 
modification functions. The main disadvantage 
of this approach is that it is not fully flexible and 
it allows us to obtain the modified geometry 
according parametric modification function 
which is already defined. 
 

3.1 SAC Parametric Modification function 
 
Various hull forms can be derived by parametric 
modification of SAC.  
The given SAC is modified by adding the parametric 

modification function of SAC shape, )()6( xr  which is 

a 6th order polynomial function defined with only x

direction. The modification function, )()6( xr  will be 

parametrically changed by variation of 0,, xxx cSAC  

and 1x considered as design variables as shown in 

Figure 1. SACx is maximum longitudinal movement, 

cx is a fixed position where the shape of section is 

fixed and 0x and 1x represent the reference range of 

modification. To preserve the total volume of the ship, 
the maximum longitudinal movement needs to be in 
the middle between 0x and Cx , and also between Cx

and 1x  with the opposite direction as shown in Figure 

1. 
 

In order to determine the polynomial coefficients of 

)()6( xr , seven boundary conditions need to be 

satisfied( i.e. 0)(,0)( 10  xrxr ,

0)(,0)(,0)( 10  xrxrxr C ,

SACC xxxr  )5.05.0( 0 , 

SACC xxxr  )5.05.0( 1 )

 
Table 1 Design parameters for the hull form optimization 

Design parameter Symbol Annotation 

SAC Shape 
SACx  Max movement 

Cxxx ,, 01  Fixed section 

Section 
Shape 

 

U-V type 
UVy Max movement 

UV
z0 Fixed waterline 

UV
z1 Max movement 

DLWL type 
DLWLy Max movement 

DLWL
z0 Fixed waterline 

DLWL
z1 Max movement 

Bulb Shape 
 

Bulb area 
BAy Max movement 

Bulb length 
BLx Max movement 

Bulb height 
BHz Max movement 

Bulb size 
BSz Max movement 

Transom Height TSz  Max movement 
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As a result of the modification of the original SAC, 
the new section shape at any longitudinal position can 
be obtained by the original sectional area curve by 
Lackenby-method (see Lackenby [23]). The new grid 
point can be obtained by moving the grid point with x 
direction according to the modification function as 
follows, 

)()6( xrxx oldnew                                          (4) 
 
3.2 Section shape parametric modification 
function 
 
There are two types of the modification functions: 
DLWL type and U-V type. DLWL type is the 
function to modify the design load waterline (DLWL) 
and U-V type is the function to modify the section 
shape into U-shaped section or V-shaped section. 
The parametric modification functions of section 
shape are polynomial functions which are three 
polynomials defined with zyx ,, direction, 

respectively. The modified grid point can be obtained 
using the perturbation with y direction where the 

amount of perturbation can be obtained by 
multiplying three modification functions as follows, 

)()()( )3()5()4( ztysxryy oldnew                                                          

(5) 

Where )()4( xr  is a 4th order polynomial function 

defined with only x direction, )()5( ys  a 5th order 

polynomial function defined with only y direction 

and )()3( zt  a 3rd order polynomial function defined 

with only z direction. These parametric modification 
functions will be parametrically changed by variation 
of 0, zy  and 1z . DLWLy  and VUy  represents 

maximum horizontal movement while 0z is kept fixed 

and 1z  is the position where horizontal movement is 

maximum. Figure 2(upside) shows distributions of the 
DLWL type modification functions and Figure 
2(downside) shows distribution of the U-V type 
modification functions for combinations of 0, zy , 1z . 

Figure 3 depict the original section shape and 
modified section shape according to DLWL type 
modification function shown in left figure and U-V 
type modification function shown in right figure. 
 
3.3 Bulb shape parametric modification 
function 
 
Modification of bulb shape can be conducted by four 
design parameters: bulb area, bulb height, bulb length 
and size.  
Following the similar procedure with section shape 
parametric modification, the modified grid point can 
be obtained adding the perturbation with each 
direction where the amount of perturbation can be 

obtained by multiplying three modification functions 
as follows, 

Bulb are )()( )5()3( ztxryy oldnew                        (6) 

Bulb length : )()4( xrxx oldnew                              (7) 

Bulb height : )()()( )5()1()4( ztysxrzz oldnew    (8) 

Bulb size : )()()( )6()1()4( ztysxrzz oldnew       (9)  

These parametric modification functions will be 
parametrically changed by variation of BAy , BLx ,

BHz and BSz  which represent maximum 

movement with each direction as shown Figure 3. 

 
 
 
Figure 1 The four design variables (

10 ,,, xxxx cSAC ) description of the fore body part 

of the sectional area curve (SAC) 
 

 
 

 
 
Figure 2 The distributions of the DLWL type 
modification functions(upside) and  the distribution of 
the U-V type modification functions(downside) for 

combinations of 0, zy , 1z  
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Figure 3 The six design variables description of the 
section shape: 

DLWLDLWL
zzyDLWL 10 ,, (DLWL type in 

left side); 
UVUV

zzyUV 10 ,, (U-V type in right side) 

 
Figure 3(upside) shows the original bulb area and 
modified bulb area bulb area according the bulb area 
modification. Bulb area is defined in the area of 
section in F.P. (i.e. fore perpendicular). Figure 
3(downside) depicts original and modified bulb 
length, height and size according the modification 
functions, respectively.  
 
4. THE OPTIMIZATION ALGORITHMS 

Most general-purpose optimization software 
used in industrial applications makes use of 
gradient-based algorithms, mainly due to their 
convergence properties and computational 
efficiency when a relatively small number of 
variables is considered. However, local 
optimizers have difficulties with local minima 
and non-connected feasible regions. Because of 
the increase of computer power and of the 
development of efficient Global Optimization 
(GO) methods, in recent years nongradient-based 
algorithms have attracted much attention. 
Furthermore, GO method provide several 
advantages over local approaches. They are 
generally easy to program and to parallelize, do 
not require continuity in the problem definition, 
and are generally better suited for finding a 
global, or near global, solution. In particular, 
these algorithms are ideally suited for solving 
discrete and/or combinatorial type optimization 
problem. In this paper, the derivative-based SQP 
and the GO approach PSO are compared, 
focusing on their effectiveness and efficiency. 
 

4.1 A local, gradient-based optimization 
algorithm: SQP 

Sequential quadratic programming (SQP) is 
an efficient, gradient-based, local optimization 
algorithm. The method has a theoretical basis 
that is related to the solution of a set of nonlinear 
equations using Newton's method, and the 
derivation of simultaneous nonlinear equations 
using Karush-Kuhn-Tucker conditions to the 

Lagrangian of the constrained optimization 
problem.  
The equations are approximated with a quadratic 
form:  

dxfBdd TT )(2/1min                          (10) 
subject to   

,0)(  xhdh j

T

j              Mj ,,1   

0)(  xgdg j

T

j              Mj ,,1      

i
u

i
l xxx                      Ni ,,1  

 
where d is search direction vector and B is 
approximate Hessian matrix of the Lagrangian. 
During the optimization process the optimum d
is determined and x  is updated by 

dxx nn 1  
 at each iteration (see e.g. Rao [24]). 
 
4.2 A global, derivative-free optimization 
algorithm: PSO 

The growing interest for PSO to solve 
distinctive global optimization problems (e.g. 
ship design) is encouraged by the following 
appealing features: (i) balance, between the 
computation involved and the precision of the 
solution detected; (ii) constant computational 
cost and memory engagement at each iteration; 
(iii) availability of a current approximate 
solution; (iv) derivatives of the objective 
function not required; (v) easy implementation 
and parallelization of the method. However PSO 
iteration is neither able to guarantee the 
convergence to a global minimum nor to a local 
minimum. Indeed, PSO is a heuristic method, and 
its reformulations in the literature are heuristics 
as well.  

PSO simulates the social behaviour of a group 
of individuals by sharing information among 
them while they are exploring the design space. 
Each particle of the swarm has its own 
(individual) memory to remember the places 
visited during the exploration, whereas the 
swarm has its own (collective) memory, to 
memorize the best locations ever visited by any 
of the particles. The particles have an adaptable 
velocity and investigate the design space 
analyzing their own flying experience, and the 
one of all the particles of the swarm. Each 
particle is a potential solution of the optimization 
problem under consideration. The basic 
algorithm is simple: 
 

 Step 0 (Initialize) 

Distribute a set of particles inside the design 
space, using some user-defined distribution. 
Evaluate the objective function in the particles’ 

position and find the best location ( bp ).  

yU-V

z0

z1

Original section
(R) Modified section : U-V type
(L) Modified section : DLWL type

yDLWL
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 Step 1 (Compute particle’s velocity) 

At the step 1n  calculate the velocity vector iv  

for each particle i using the equation:  
 

 )()( 2211
1 n

i
n
b

nn
i

n
i

nnnn
i rcrcw xpxpvv                  (11) 

 
Where  is a speed limit, w is the inertia of the 
particles, controlling the impact of the previous 
velocities onto the current one. The second and 
third terms, with weights 1c  and 2c , are the 

individual and collective contributions, 
respectively and finally, 1r  and 2r  are random 

coefficients uniformly distributed in [0,1]. 
 Step 2 (Update position) 
Update the position of each particle:  

11   n
i

n
i

n
i vxx                                               (12) 

 Step 3 (Check convergence) 
Go to Step 1 and repeat until some convergence 
criterion (e.g. the maximum distance among the 
particles) is matched. 
DPSO is a deterministic version of the basic PSO 
for constrained single objective problems which 
includes several algorithmic improvements. More 
details are given in Campana et al. 2006. A 
multi-objective version of the DPSO has been 
recently presented in Pinto et al. 2007 to which 
the interested reader is referred.  
Experimental results indicate that a large value 
of the inertia w  promotes a wide exploration of 
the global search space. Hence w  is initially set 
to a high value and then gradually decreased 
( Kww nn 1 , with 1K ) to facilitate the fine-

tuning of the current search area. The set of 
parameters adopted in the computations is given 
in Table 2. 
 
5. NUMERICAL RESULTS 
 
5.1 Single objective tests 

In order to demonstrate the effectiveness of 
the parametric modification and its coupling with 
local and global optimizer, a container hull-form 
optimization problem is solved with both the 
SQP and the PSO optimization algorithms for 
single objective problem. The optimizers are 
applied to the KRISO Container Ship (KCS, main 
dimensions:  ,230mLBP  ,2.32 mBreadth  

mdraft 8.10 ). The geometrical constraint is 

on the displacement (which is kept fixed ± 1% of 
the original value). The keel line is kept fixed, 
but bulb profile can be changed. 
 
 
 

Table 2 Particle swarm optimization parameters for 
single objective problem 
 
 

Parameters Value 

Constriction parameter (speed 
limit)  �  1.0 

Initial inertia weight 0w  1.4 

Decreasing coefficient K   for 
the inertia 

0.975 

Individual parameter( 1c ) 0.4 

Social parameter( 2c ) 0.3 

 
Finally, thedesign variables are limited by some 
box constraints, defining the range that we like 
to explore: LBP%40 , from Station 12 to the 
bulb tip. The offset should join smoothly the 
original hull at Station 12.  
For the single objective function problem the 
goal is simply to reduce the wave resistance 
coefficient WC  at fixed speed ( NF  = 0.26). The 

motivation for the choice of using WC  is given 

by the fact that the focus of this paper is on 
linking the parametric modification approach 
with local and global optimizers, and therefore 
there was no need for using more complicated 
objective functions.  
The numerical solver adopted for this test is a 
standard free surface potential flow solver with 
nonlinear free surface conditions satisfied at the 
exact free surface position. The solution 
procedure used to solve Laplace equation subject 
to nonlinear free surface boundary conditions and 
other boundary conditions is based on the 
Rankine source panel method (Choi et al. [26]; 
Raven [27]). The wave-resistance coefficient WC
is evaluated by integrating the pressure over the 
wetted hull surface. The details of the nonlinear 
potential flow solver are given in Choi et al. [26]. 
 Even if the adopted panel solver has the 
capability of imposing the exact non-linear 
boundary conditions on the free surface, for the 
single objective problem test here, it is decided 
to use the linearized version of the code solving 
only the linearized free surface boundary 
condition. This allowed for a significant decrease 
of the computational complexity without having 
diminished the scope of the numerical 
experiment. However, in multi-objective problem 
test, non-linear boundary conditions are adopted 
to enhance the numerical accuracy.  
For the single objective problem we will provide 
the numerical results of relative to five different 
cases, consisting of different number of design  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4 (a, b, c, d) The four design variables description of bulb shape: BAy (bulb area in upside); BLx ,

BHz and BSz  (bulb length, bulb height and bulb size in downside) 

 

 
(A) 

 
(B) 

 
(C) 

Figure 5 Initial distribution of the swarm particles for 3 design variables. 
(A) PSO-hcf,  (B) PSO-hcv (C) PSO-sobol. 
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variables, from 2 to 6. Table 3 summaries all the 
cases. Results indicate, quite naturally, that by 
increasing the number of variables we give more 
freedom to the optimizers, therefore allowing the 
algorithms find better optima. 
The numerical results for the single objective 
tests are summarised in Table 4 as the percentage 

WC  reduction with respect to the original value 

(0.3544 310 ). 
 
Table 3 Problem number N is obtained by adding 
the corresponding design parameter to those used 
in the problem number (N-1). 

 

Problem 
Number 

of 
variables 

Design parameters 

OPT 1 2 
Entrance angle in 
SAC*  + Section 
Shape (U / V type) 

OPT 2 3 
Add : Section 
shape(DLWL type) 

OPT 3 4 Add : Bulb area 
OPT 4 5 Add : Bulb height 
OPT 5 6 Add : Bulb size 

* SAC is the Section Area Curve. 

Table 4 Numerical results of the five different 
single objective problems indicated in Table 3.  
F is the CW reduction (%) obtained, whereas Nj 
(reported in brackets) is the number of function 
evaluations. Original CW value at FN =0.24 is 
0.3544 x 10-3. 
 

 

SQP 
PSO-
hcv 

PSO-
sobol 

PSO-
hcf 

F  % 
( fN ) 

F  % 
( fN ) 

F  % 
( fN ) 

F  % 
( fN ) 

OPT 1 
15.2 
(44) 

15.6 
(35) 

15.7 
(35) 

9.1 
(40) 

OPT 2 
20.2 
(37) 

19.3 
(90) 

18.6 
(56) 

19.3 
(63) 

OPT 3 
24.5 
(56) 

24.2 
(221) 

22.3 
(72) 

21.3 
(63) 

OPT 4 
29.0 
(90) 

27.8 
(429) 

18.2 
(88) 

21.3 
(77) 

OPT 5 
32.8 
(76) 

32.4 
(650) 

29.9 
(104) 

21.6 
(91) 

 

Three different PSO implementations have been 
tested, based on different initial distribution of 
the particles in the design space (see Figure 5), 
and each of the three might require different 
swarm sizes:  

 PSO-sobol (with the swarm particles 
initially distributed according the Sobol 
quasirandom sequence 1 ) in general do not 
require a fixed size of the swarm. Here, the 
selected swarm size is of 12  N ( N  is 
the number of design variables); 

 PSO-hcv, with the swarm particles initially 
distributed at the vertices of the hypercube 
representing the feasible set and center point, 

requires N2 +1 particles; 
 PSO-hcf, with the swarm particles initially 

distributed at the centre of the hypercube 
faces and center point, requires instead only 

12  N particles.  
 
The interesting quantity to be monitored are 
hence both the resistance reduction rate and the 
number of function evaluations fN , being 

related to the overall computational effort.  
An overall comment is that SQP and PSO-sobol 
show comparable performances, PSO-hcv is 
computationally slow to converge. PSO-hcf is as 
efficient as SQP in terms of fN  : although 

capable of reducing the objective function 
significantly, it doesn’t reach however the WC  % 

reduction found by the other methods. 
By looking at Table 4 it can be clearly observed 
that all the three approaches show better 
performances when the number of variables 
increases (see also Figure 6). The SQP method 
demonstrates a fast convergence for all cases, 
requiring a relatively small value of fN . To 

explain this result, a further analysis has to be 
carried out, by looking at the shape of OPT1 and 
OPT2 feasible domains (Figure 7 and 8: the 
feasible set for OPT3, OPT4 and OPT5 cannot be 

easily shown, being domains in 654 ,,  , 
respectively).  
The plot of the function iso-contours and of the 
(volume) constraint clearly shows that the 
domain is convex and hence, with a unique 
global optimum. This condition ensures that even 
a local optimization algorithm can find the global 
optimum independently from the initial guess. 
This is an ideal condition for the fast 
convergence of any gradient-based approach. The 
good performances of SQP also for OPT3, OPT4 
and OPT5, can be seen as an indirect 
confirmation that the basic features of the set of 

                                                 
1 The quasirandom Sobol sequence (Sobol [27]) is a 
useful tool in the  approximation of integrals in higher 
dimensions and in global optimization. The sequence 
is easily obtained: choose a base (say 2), and with i = 
1, 2, 3, ... , write i in base 2, then reverse the digits, 
including the decimal sign, and convert back to base 
10.  
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optimization problems we built for this test are 
relatively simple.  
 

 
Figure 6  CW % reduction (F) as a function of 
the number of variables NV. SQP (□) and PSO-
hcv (▲) increase linearly their performance with 
NV. PSO-sobol (●) shows roughly the same trend 
but  NV =5.  PSO-hcf (◊) shows approximately a 
square-root trend. 
 

 
 
Figure 7 WC  isocontours  as a function of the 

design variables for OPT 1. SQP and PSO-sobol 
convergence path is also reported. 
 
PSO-hcv shows almost identical WC  reductions 

with respect to SQP, but with a much higher 
number of function evaluations fN  (up to one 

order of magnitude). This is not unexpected: PSO 
is a derivative-free, global optimization 
algorithm, and the lack of knowledge of gradient 
information requires more computational effort. 
On the other hand, it is expected to work well in 
cases where any local method would fail. The 
different behavior between the two methods can 
be observed in Figure 7 and 8 where the path of 
the SQP and of the PSO-sobol are compared.  

An interesting result is that both PSO-sobol and 
PSO-hcf show a much reduced number of 
function evaluations with respect to PSO-hcv and 
very close to the SQP values (in two cases even 
less than SQP). These two approaches show 
however different performances with respect to 
the WC  reduction: the optimum found by PSO-

sobol are very close to the SQP and PSO-hcv 
best results. 
 

 
 
Figure 8 WC  isocontours as a function of the 

design variables for OPT 2. SQP and PSO-sobol 
convergence path is also reported. 
 
 
In conclusion, PSO-sobol shows very interesting 
features  with good efficiency in terms of 
reduced number of evaluations, a characteristic 
that is particularly attracting when more complex 
problem have to be solved (e.g. with more 
complex constraints).   
 
5.2 Multi-objective test #1 
 
For the multi-objective test #1, the WC at two 

speeds ( NF  = 0.24 and 0.26) are the two 

objectives for KCS. Four design variables were 
used in this test: the entrance angle in SAC, the 
section shape (U-V type & DLWL type) and the 
bulb area. The geometrical constraint is the same 
with that of the single objective problem. This 
problem is evidently a multi-point optimization 
problem more than a truly multi-objective, but, 
as stated before, we are interested in assessing 
the performances of the optimizers/parametric 
approach coupling  rather than in solving a 
complicated problem. 
The numerical solver is a standard free surface 
potential flow solver with nonlinear free surface 
conditions. For the computations, the hull and 
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the near free-surface are discredited with 1848 
and 2370 panels, respectively. 
The numerical results for the multi-objective test 
are summarized in Table 5. SQP, as all the 
gradient-based approaches, can only deal with 
single objective problems. To deal with a multi-
objective one SQP has to use an aggregated 
approach, i.e. the problem has to be transformed 
into a single objective one by making a linear 
combination, with some user defined weights, of 
all the objective functions. In this way however, 
the true nature of the multi-objective problem 
(i.e. the concept of Pareto front, see as an 
example in Miettinen [29]) is lost. This is an 
intrinsic limit of gradient-based methods. Here, 
the SQP is used to solve the separated problems 
at the two speeds. 
 
 
Table 5 The performances of the three selected 
Pareto front solutions (PSO_ship1, 2 and   3) are 
compared with the original ones. Original WC  

value is 0.29757 310 (at  NF =0.24) and 0.55547
310 310 (at  NF =0.26). 

 
Obj 

function #1 
% 

Obj function 
#2 
% 

Original 100.0 100.0 

PSO-KCS1 92.2 93.3 

PSO-KCS2 92.4 92.5 

PSO-KCS3 93.0 91.5 

SQP-KCS1 91.6 94.6 

SQP-KCS2 93.7 91.4 
 
Table  
6. KVLCC main dimensions and parameters 
 

Parameter Ship Model 
Scale ratio λ 58.0 

Length LBP (m) 320.0 5.5172 
Breadth B (m) 58.0 1.0000 

Draft t (m) 20.8 0.3586 
Block Coef. BC  0.8098 0.8098 

Reynolds No. NR   4.6 x 106 

 
The swarm particles are initially distributed 
according the PSO-sobol approach in the multi-
objective problem.  
The solutions in the function space with the 
populations generated in the course of 
optimization cycles are plotted in Figure 9 in 
terms of objective function 1 and 2, and the 
symbol delta denotes the original hull, the 
symbol diamond the Pareto set after 5 generation 
and the symbol square the Pareto optimal set. 

 
Figure 9 Pareto set after 5 generation and Pareto 
optimal set 

 
Figure 10 The Pareto front is reported in the 
function space. SQP-KCS1 and 2 represent the 
SQP solution of the two single objective 
problems obtained for the two different speeds. 
PSO-KCS1, 2 and 3 are three Pareto solutions 
obtained with the PSO-sobol approach 
 
It can be seen that the PSO optimization 
algorithm can find the Pareto optimal set where 
the values of all the objective functions are 
decreased. Figure 10 shows three PSO solutions 
selected in Pareto optimal set and SQP solution 
of the two single objective problems obtained for 
the two different speeds, whereas their relative 
performances are reported in Table 5. 
In Figure 11-12 the body lines and buttock lines 
of three PSO solutions selected as a sample are 
plotted, whereas their relative performances are 
reported in Figure 9 and Table 5. PSO-KCS1 has 
better wave resistance performance in higher 
design speed and PSO-KCS3 has better wave 
resistance performance in lower design speed 
within Pareto optimal set. PSO-KCS2 is in the 
middle of PSO-KCS1 and PSO-KCS3.  
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5.3 Multi-objective test #2 
 
This second multi-objective test is more complex 
and computational expensive. The code adopted 
for the analysis is the RANS solver WAVIS 
(version 1.3. A description of the code is given in 
Van et al. [30]).  
Being the goal of this example to show the 
possibility of linking the parameterization 
technique with volume solvers and to test the 
effectiveness of the optimizers in this cases, only 
double body computations have been performed 
during this test (at model scale). The volume grid 
adopted in the analysis has 173  41  41 cells. 
Each computation required about 25 minutes on 
an Intel Core 2 - 6600 - 2.4 GHz. 
 
The problem is to optimize the shape of the 
KRISO VLCC ship (KVLCC, see Table 6 for 
main dimensions) given two objective functions 
to be minimized: (i) the form resistance (Hino 
[31]):  

FOeldoubleT CCk /)(1 mod
                       (13)  

where,                                        

 (ITTC 1957 frictional 
coefficient) 
and (ii) the mean longitudinal velocity XV  at the 

propeller plane (we take – XV  as objective 

function to be minimized). 
Three design variables have been used in this test: 
(i) 1 = the run angle in SAC (stern region), (ii) 

2 = the U-V type section shape and (iii) 3 = the 

DLWL type section shape. The adopted box 
constraints are: on 1 : 0.3 of  the station; on 2 : 

7% and 3 : 5% of half the breadth. Only the aft 

part of the hull can be modified (from stations 0 
to 8). 

 
 

 
 

 
 

Figure 11 The bodylines of three Pareto front 
solutions (PSO-KCS1, 2 and 3) are compared 
with the original ones. 
 
 
 

Table 7. Multi-objective test case #2.  

 Orig. 
PSO-

KVLCC1 
PSO-

KVLCC2 
PSO-

KVLCC3 

Δ(m3) 312450 311348 310970 310008 

CF *1000  
1975 ITTC 

3.450 3.450 3.450 3.450 

CF  * 1000 3.374 3.387 3.374 3.400 

CVP * 1000 0.913 
0.817 

(89.5%) 
0.856 

(93.8%) 
1.056 

(115.7%) 

k1  1.243 
1.213 

(97.6%) 
1.226 

(98.6%) 
1.292 

(103.9%) 

xV  0.32 
0.266 

(83.1%) 
0.360 

(112.5%) 
0.547 

(170.9%) 

     

2

10

0.075

(log Re 2)
FOC 



PSO-KCS1Original Hull

PSO-KCS2Original Hull

PSO-KCS3Original Hull
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(a)Original Hull 

 

(b)PSO-KCS1 

 

 

(c)PSO- KCS 2 

 

 

 

(d)PSO- KCS 3 

Figure 12 Comparison with the original and Optimum hull shapes 

 

  

Figure 13 Form resistance (top) and mean velocity (bottom) iso-contours as a function of the 3 design 
variables. The red dots are Pareto solution. 
 
A regular sampling of the two objective 
functions was performed before the test started, 
so that it has been possible to plot their gross 
structure and to follow the evolution of the 
optimization procedure (Figure 13). For positive 
values of 1  (run angle in SAC) both the 

objective functions show reduced values with 
respect to the original hull (the point at 1 = 2 =

3 =0). As to 2  (the U-V type section shape), 

the two functions show opposite trends. Minor 
changes are produced by 3  (DLWL type section 

shape).  

 
The discrete approximation of the Pareto front 
eventually found by the algorithm is also 
reported in Figure 13. The solutions are close to 
the box constraint on 1 . Among these Pareto-

optimal solutions, The three hulls have been 
selected as a sample: PSO-KVLCC1, PSO-
KVLCC2 and PSO-KVLCC3. Their bodylines, 
compared with the original ones, are reported in 
Figure 13.  
 
The geometrical features of these three solutions 
are easily identifiable. PSO-KVLCC1 has the 
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highest admissible value of 2 , and hence shows 

a V-type stern, whereas PSO-KVLCC3 has the 
lowest admissible value of 2 , hence showing a 

U  type shape. All the three ships display a 
larger SAC angle (positive 1 ). The individual 

performances of the three ships are reported in 
Figure 14 and in Table 7, whereas the 
distribution of the axial velocity at the propeller 
disk is plotted in Figure 16.  
 
 
 

 
Figure 14 The performances of the Pareto 
solutions for the multi-objective test case. 

 
 

 

 

 

 
Figure 15 Body lines for three different solutions 

of the multi-objective test case #2 
 
 
 
 
 

 

6. CONCLUSIONS  
A designer friendly hull form 

parameterization and its coupling with a local 
and a global optimization algorithm have been 
developed, and applied to several tests of the 
design of hull form. As optimization algorithms, 
we choose to implement the Sequential Quadratic 
Programming and the Partial Swarm 
Optimization as representative of algorithms with 
rather opposite characteristics, and they relative 
performances are discussed. 
Following a well known naval architect’s design 
practice, a parametric modification tool is developed 
and adopted in the present study to produce modified 
hull forms during optimization cycles. In this 
approach, the original geometry can be easily 
deformed by direct selection of some standard design 
parameters and useful information about the effect of 
the changing in the parameters are immediately 
obtained and visualized. At the same time, design 
parameters are assumed as design variables in the 
formulation of the optimization problem. This study 
has also shown that the present parameterization 
method demonstrated robustness and flexibility 
in the use. 
As an application, a container ship is taken as an 
initial hull, and local and global optimizer are 
used to determine the optimal hull forms with 
respect to wave resistance coefficient at two 
speeds. A wave resistance reduction at two 
speeds in the range of 7 to 8 % is achieved. The 
second multi-objective optimization shows the 
possibility of linking the parameterization 
technique with volume solvers and test the 
effectiveness of the optimizers. The KVLCC is 
taken as an initial hull and the form resistance 
and the mean longitudinal velocity at the 
propeller plane are minimized.  
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(a) Original hull 

 

(b) PSO1 

 

(c) PSO2  

 

(c) PSO39  

Figure 16 Axial velocity distribution at the propeller disk: (a) original hull,  (b) PSO1,  (c) PSO2,  (d) 
PSO39 
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