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ABSTRACT 

 
In this paper, the effect of temperature dependent variable viscosity inversely proportional to linear function 

of temperature on Magnetohydrodynamic (MHD) natural convection flow of viscous incompressible fluid along 
a uniformly heated vertical wavy surface has been investigated. The governing boundary layer equations with 
associated boundary conditions for phenomenon are converted to non-dimensional form using suitable 
transformations. The resulting nonlinear system of partial differential equations are mapped into the domain of 
flat vertical plate and then solved numerically employing the implicit finite difference method, known as Keller-
box scheme. The solutions are obtained in terms of the skin friction coefficient, the rate of heat transfer, the 
streamlines and the isotherms over the whole boundary layer and are shown graphically for the effects of the 
pertinent parameters, such as the viscosity parameter (ε) and the magnetic parameter (M) for Prandtl number 
Pr = 0.73 and the amplitude of the wavy surface α = 0.3.  
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1. INTRODUCTION 
 

It is necessary to study the heat transfer from an 
irregular surface because irregular surfaces are often 
present in many applications. It is often encountered 
in heat transfer devices to enhance heat transfer. 
Laminar natural convection flow from irregular 
surfaces can be used for transferring heat in several 
heat transfer devices, for examples, flat-plate solar 
collectors and flat-plate condensers in refrigerators 
and heat exchanger. One common example of a heat 
exchanger is the radiator used in car, in which the heat 
generated from engine transferred to air flowing 
through the radiator. Alam et al. [1] have studied the 
problem of free convection from a wavy vertical 
surface in presence of a transverse magnetic field. The 
viscosity of the fluid to be proportional to a linear 
function of temperature, two semi-empirical formulae 
were proposed by Charraudeau [2]. The effect of 
temperature dependent viscosity on natural 
convection heat transfer from a horizontal isothermal 
cylinder of elliptic cross section have been studied by 
Cheng [3]. Hossain et al. [4] investigated the natural 
convection flow past a permeable wedge for the fluid 
having temperature dependent viscosity and thermal 
conductivity. Molla et al. [6] studied natural 

convection flow along a vertical wavy surface with 
uniform surface temperature in presence of heat 
generation/absorption. Natural convection flow from 
an isothermal horizontal circular cylinder with 
temperature dependent viscosity was also investigated 
by Molla et al. [7]. Hossain et al. [8] investigated 
natural convection of a viscous fluid with viscosity 
inversely proportional to linear function of 
temperature from a vertical wavy cone. Numerical 
study on a vertical plate with variable viscosity and 
thermal conductivity has been investigated by Palani 
and Kim [9]. Nasrin et al. [10] investigated MHD free 
convection flow along a vertical flat plate with 
thermal conductivity and viscosity depending on 
temperature. The natural convection heat transfer 
from an isothermal vertical wavy surface was first 
studied by Yao [11, 12] and using an extended 
Prandtl’s transposition theorem and a finite-difference 
scheme. He proposed a simple transformation to study 
the natural convection heat transfer from isothermal 
vertical wavy surface. Yet the preceding literature 
survey shows that in natural convection heat transfer 
the variation of viscosity with temperature and 
magnetic field along a vertical wavy surface has not 
been well investigated.  
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The present study is to incorporate the idea on the 
effects of temperature dependent viscosity inversely 
proportional to linear function of temperature in 
presence of strong magnetic field of electrically 
conducting fluid with free convection along a vertical 
wavy surface. However, it is known that viscosity 
may change significantly with temperature. The 
governing partial differential equations are reduced to 
locally non-similar partial differential forms by 
adopting some appropriate transformations. The 
transformed boundary layer equations are solved 
numerically using implicit finite difference scheme 
together with the Keller box technique [5]. We have 
focused our attention on the surface shear stress in 
terms of local skin friction and the rate of heat transfer 
in terms of local Nusselt number, the stream lines and 
the isotherms for selected values of parameters 
consisting of the magnetic parameter M and the 
viscosity variation parameter ε. 
 

2. FORMULATION OF THE PROBLEM  
 

The boundary layer analysis outlined below allows 
)(Xσ  being arbitrary, but our detailed numerical 

work will assume that the surface exhibits sinusoidal 
deformations. The wavy surface may be described by 

⎟
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where L is the characteristic length associated with 
the wavy surface. 

The geometry of the wavy surface and the two-
dimensional Cartesian coordinate system are shown in 
Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 1. Physical model and coordinate system 
 

Under the usual Boussinesq approximation, we 
consider the flow governed by the following boundary 
layer equations: 
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where (X, Y) are the dimensional coordinates along 
and normal to the tangent of the surface and (U, V) are 
the velocity components parallel to (X, Y), k(T) is the 
thermal conductivity and μ(T) is the dynamic 
viscosity of the fluid in the boundary layer region 
depending on the fluid temperature. 

The boundary conditions for the present problem 
are 

)(,0,0 XYYatTTVU ww σ=====           (6) 

∞→=== ∞∞ YaspPTTU ,,0                  (7) 

There are very few forms of viscosity variation 
available in the literature. Among them we have 
considered that one which is appropriate for liquid 
introduced by Hossain et al. [8] as follows: 
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where μ∞ is the viscosity of the ambient fluid and *ε is 
a constant evaluated at the film temperature of the 
flow )(21 ∞+= TTT wf . 

Following Yao [11], we now introduce the 
following non-dimensional variables 
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Introducing the above dimensionless variables into 
Equations (2)–(5), the following dimensionless form 
of the governing equations are obtained:  
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In the above equations, Pr, ε and M are, respectively 
known as the Prandtl number, the dimensionless 
viscosity parameter and dimensionless Magnetic 
parameter, which are defined as  

k
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Equation (11) indicates that the pressure gradient 
along the y-direction is )( 4

1−GrO , which implies that 
lowest order pressure gradient along x-direction can 
be determined from the inviscid flow solution. 

Equation (11) further shows that ypGr ∂∂ /4
1

 is 
O(1) and is determined by the left-hand side of this 
equation. Thus, the elimination of yp ∂∂ /  from 
equations (10) and (11) leads to 
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The corresponding boundary conditions for the 
present problems then turn into 
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Now we introduce the following transformations to 
reduce the governing equations to a convenient form: 
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where η is the pseudo similarity variable and ψ is the 
stream function that satisfies the equation (9). 

Introducing the transformations given in equation 
(15) into equations (13) and (12) the momentum and 
energy equations take the following forms, 
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The boundary conditions (14) now take the 
following form: 
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The rate of heat transfer in terms of the local 
Nusselt number, Nux and the local skin friction 
coefficient, Cfx take the following forms: 
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3. METHOD OF SOLUTION 
 

This paper concerns the natural convection flow of 
viscous incompressible fluid along a uniformly heated 
vertical wavy surface in presence of strong magnetic 
field and variable viscosity inversely proportional to 
linear function of temperature along a vertical wavy 
surface using the very efficient implicit finite 
difference method known as Keller box scheme 
developed by Keller [5]. This method has been 
extensively used recently by Hossain et al. [1, 4, 6, 7 
and 8].  

4.  RESULT AND DISCUSSION 
 

The governing equations (16) and (17) with the 
boundary conditions in equation (18) are solved 
numerically employing a very efficient implicit finite 
difference method together with Keller-box scheme. 
Numerical values of the shear stress in terms of the 
skin friction coefficients Cfx, the rate of heat transfer 
in terms of the Nusselt number Nux, the streamlines 
and the isotherms are presented graphically for 
different values of the viscosity parameter ε = 0.0 
(constant viscosity) to 1.0, the magnetic parameter M 
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= 0.0 (non magnetic field) to 2.0 while Prandtl 
number Pr = 0.73 and the amplitude of the wavy 
surface α = 0.3. 

The influence of the parameter ε = (0.0, 0.5 and 
1.0) on the surface shear stress in terms of the local 
skin friction Cfx and the rate of heat transfer in terms 
of the local Nusselt number Nux are illustrated 
graphically in Figures 2(a) and 2(b) respectively when 
the values of amplitude of wavy surface α = 0.3, 
magnetic parameter M = 0.5 and Prandtl number Pr = 
0.73. Figure 2(a) indicates that increasing the values 
of the viscosity-variation parameter ε, the skin friction 
coefficient decreases slowly along the downward 
direction of the plate. On the other hand it can be 
shown from Figure 2(b) that the value of the rate of 
heat transfer along the wavy surface increases for 
increasing the values of the viscosity-variation 
parameter ε. Here we conclude that for high viscous 
fluid inversely proportional function of temperature 
the skin-friction coefficient is slow and the 
corresponding rate of heat transfer is large. In Figure 
2(a), the maximum values of local skin friction 
coefficient Cfx are 0.86640, 0.78213 and 0.77294 for ε 
= 0.0, 0.5 and 1.0 respectively which occur at 
different values of x and it is seen that the local skin 
friction coefficient Cfx decreases by 10.79% as ε 
increases from 0.0 to 1.0. Again Figure 2(b) shows 
that the rate of heat transfer increases 7.82% due to 
the increased value of ε. Increasing values of ε lead to 
increase the amplitude of the Nux. 
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Figure 2. Variation of (a) skin-friction 
coefficient (b) rate of heat transfer against x for 
varying of ε with M = 0.5, α = 0.3 and Pr = 0.73. 
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Figure 3. Variation of (a) skin-friction 
coefficient (b) rate of heat transfer against x for 
varying of M with ε = 0.5, α = 0.3 and Pr = 0.73. 
 
 
The effect of the magnetic parameter M = (0.0, 0.5, 

1.0, 1.5, 2.0) on the surface shear stress in terms of the 
local skin friction Cfx and the rate of heat transfer in 
terms of the local Nusselt number Nux are depicted 
graphically in Figures 3(a) and 3(b) respectively when 
the values of amplitude of wavy surface α = 0.3, 
viscosity parameter ε = 0.5, and Prandtl number Pr = 
0.73. As electrically conducting fluid in presence of 
magnetic field generates electrical current, the 
magnetic field is changed and the fluid motion is 
moderated. As a result, the velocity gradient f"(x, 0) 
decreases with the increase of the magnetic parameter 
M. The same result is observed on the local rate of 
heat transfer Nux due to that an increase in the 
magnetic parameter M at different position of x. The 
skin friction coefficient and the rate of heat transfer 
coefficient decrease by 33.55% and 11.71% 
respectively as M increases from 0.0 to 2.0. 

Figures 4 and 5 illustrate the effect of the 
temperature dependent viscosity variation parameter ε 
on the development of streamlines and isotherms 
respectively which are plotted for Prandtl number Pr = 
0.73, amplitude of wavy surface α = 0.3 and M = 0.5. 
We find that for ε = 0.0 the value of maxψ = 6.46, for 

ε = 0.5 the value of maxψ = 6.68 and for ε = 1.0 the 

value of maxψ = 6.78. From Figure 4, it is seen that 
the effect of viscosity parameter ε, the flow rate in the 
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boundary layer increases. From Figure 5, we observe 
that owing to the effect of ε, the thermal state of the 
fluid decreases causing the thermal boundary layer 
decrease. 

The effect of variation of the surface roughness on 
the streamlines and isotherms for the values of M 
equal to 0.0, 1.0 and 2.0 are depicted by the Figure 6 
and Figure 7 respectively while Prandtl number Pr = 
0.73, amplitude of wavy surface α = 0.3 and viscosity 
variation parameter ε = 0.5. We observe from Figure 7 
that as the values of magnetic parameter M increases 
the thermal boundary layer thickness becomes higher 
gradually. Figure 6 depicts that the maximum values 
of ψ decreases steadily while the values of M 
increases. The maximum values of ψ, that is, maxψ  
are 9.37, 4.69 and 3.05 for magnetic parameter M = 
0.0, 1.0 and 2.0 respectively. Finally we conclude that 
for much roughness of the surface with the effect of 
magnetic parameter the velocity of the fluid flow 
decreases in the boundary layer. 
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Figure 4. Streamlines for (a) ε = 0.0, (b) ε = 0.5 
and (c) ε = 1.0 while the magnetic parameter M 
= 0.5, amplitude of wavy surface α = 0.3 and 
Prandtl number Pr = 0.73. 
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Figure 5. Isotherms for (a) ε = 0.0, (b) ε = 0.5 
and (c) ε = 1.0while M = 0.5, α = 0.3 and Pr = 
0.73. 
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Figure 6. Streamlines for (a) M = 0.0, (b) M = 
1.0 and (c) M = 2.0 while ε = 0.5, α = 0.3 and Pr 
= 0.73. 
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Figure 7. Isotherms for (a) M = 0.0, (b) M = 1.0 
and (c) M = 2.0 while ε = 0.5, α = 0.3 and Pr = 
0.73. 

 
5. CONCLUSION 
 

The effect of temperature dependent variable 
viscosity inversely proportional to linear function of 
temperature on Magnetohydrodynamic (MHD) 
natural convection flow of viscous incompressible 
fluid along a uniformly heated vertical wavy surface 
has been investigated. From the present investigation 
the following conclusions may be drawn:  
• The effect of increasing viscosity parameter ε 

results in decreasing the local skin friction 
coefficient Cfx and increasing the local rate of 
heat transfer Nux. 

• An increase in the values of M leads to decrease 
the skin friction coefficient Cfx and the local rate 
of heat transfer Nux. 

• The flow rate decreases and the thermal 
boundary layer increases when the effect of 
magnetic field is considered. 

• The streamlines increase and the thermal 
boundary layer decrease when viscosity 
parameter ε increases. 
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