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ABSTRACT 

 
The effect of the temperature dependent thermal conductivity (TDTC) on conjugate free convection flow along a 
vertical flat plate with viscous dissipation has been investigated. The transformed non-linear ordinary partial 
differential equations are solved using the implicit finite difference method with Keller–box scheme. Numerical 
results for the velocity and temperature profiles as well as local skin friction co-efficient and surface 
temperature distributions for different values of thermal conductivity variation parameter, viscous dissipation 
parameter and Prandtl number are presented graphically. The values of the Prandtl number are considered to 
be 0.733, 1.099, 1.63 and 2.18 that corresponds to air, water, glycerin and sulfur dioxide, respectively.  

Keywords: TDTC, Conjugate free convection, vertical flat plate, viscous dissipation, finite difference 
method.  
  

1. INTRODUCTION 
Free convection heat transfer and fluid flow in 

enclosures with various form and wall 
conductions has been studied widely in current 
year due to its wide range applications, such as 
building thermal design, solar energy collector 
etc. Aydin [1] studied conjugate heat transfer 
through a double pane window. On the other hand 
the thermal interaction between laminar film 
condensation forced convection along a conducting 
wall was investigated by Chen and Chang [2]. The 
axial heat conduction effect in a vertical flat plate on a 
free convection heat transfer was studied by 
Miyamoto et al. [3]. Pozzi and Lupo [4] investigated 
the coupling of conduction with laminar natural 
convection along a flat plate. Merkin and Pop [5] 
presented conjugate free convection on a vertical 
surface. In all the aforementioned analyses the effects 
of temperature dependent thermal conductivity has 
not been considered. But, laminar free convection 
flow from an isothermal sphere immerged in a fluid 
with thermal conductivity proportional to linear 
function of temperature has been studied by Molla et 
al [6]. Gebeart [7] has shown that the viscous 
dissipation effect plays an important role in natural 
convection for various devices which are subjected to 
large deceleration or which operate at high rotative 
speeds and also in strong gravitational field processes 
on large scales (on large planets) and geological 
processes. Takhar and Soundalgekar [8] have studied 

dissipation effects on MHD free convection flow past 
semi-infinite vertical plate. Therefore the objective of 
the present work is to investigate the effect of (TDTC) 
on the free convection flow along a vertical flat plate 
with heat conduction and viscous dissipation.  

2. FORMULATION OF THE PROBLEM 
Let us consider a steady two-dimensional natural 

convection flow of viscous and incompressible fluid 
along a vertical flat plate of length l and thickness b 
(See Fig.1).It is assumed that the temperature at the 
outside surface of the plate is maintained at a constant 
temperature Tb, where Tb>T∞, the ambient 
temperature of the fluid.  
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        Fig.1: Physical model and coordinate 
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The x-axis is taken along the vertical flat plate in 
the upward direction and the y-axis normal to the 
plate. 

The governing equations of such flow under the 
usual boundary layer and the Boussinesq 
approximations with temperature dependent thermal 
conductivity are given below: 
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Here we will consider the form of the temperature 
dependent thermal conductivity, which is proposed by 
Charraudeau [9]  

)](1[ ∞∞ −+= TT ff δκκ                                          (4) 

where κ∞ is the thermal conductivity of the ambient 
fluid and δ is a constant. 

The appropriate boundary conditions to be 
satisfied by the above equations are  
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The non-dimensional governing equations and 
boundary conditions can be obtained from equations 
(1) - (5) using the following non-dimensional 
quantities 
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where l is the length of the plate, Gr is the Grashof 
number, θ  is the non-dimensional temperature. 

By applying the dimensionless quantities defined 
by equation (6) in to equations (1) to (3) we get the 
following non -dimensional equations 

0=
∂
∂

+
∂
∂

y
v

x
u                                                 (7) 

θ+
∂
∂

=
∂
∂

+
∂
∂

2

2

y
u

y
uv

x
uu                                     (8) 

22

2

2

Pr
)1(

Pr
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+=
∂
∂

+
∂
∂

y
uN

yyy
v

x
u θγθθγθθ          (9) 

where Pr ( ) ∞= kc p /μ is the Prandtl number, 

)( ∞−= TTbδγ , is the dimensionless thermal 
conductivity variation parameter and 

)(22
∞−= TTclGrN bpν  is the dimensionless 

viscous dissipation parameter. 
The corresponding boundary conditions (5) take the 
following form 
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where ( ) ( ) 4/1/ Grlkbkp s∞=  is the conjugate 
conduction parameter. This coupling parameter 
determines the significance of the conduction 
resistance within the wall. In the present investigation 
we have considered p = 1. 
To solve the equations (8) and (9) subject to the 
boundary conditions (10) the following 
transformations are then introduced 
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here η  is the similarity variable and ψ is the non-
dimensional stream  function which satisfies the 
continuity equation and is related to the velocity 
components in the usual  way as yu ∂∂= ψ  and  

xv ∂∂−= ψ . Moreover h (x,η) represents the 
dimensionless temperature. The momentum and 
energy equations are transformed for the new co-
ordinate system. Thus we get 
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where prime denotes partial differentiation with 
respect to η. The boundary conditions as mentioned in 
equation (10) then take the following form 
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From the process of numerical computation, in 
practical point of view, it is important to calculate the 
values of the surface shear stress in terms of the skin 
friction coefficient. This can be written in the non-
dimensional form as 

( ) ( ) wf lGrC τμν/24/3−=  (15) 
where ])([ 0=∂∂= yw yuμτ  is the shearing stress. Using 
the new variables described in equation (6), the local 
skin friction co-efficient can be written as 

)0,()1( 20/35/2 xfxxC xf ′′+= −  (16) 
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The numerical values of the surface temperature 
distribution are obtained form the relation 

)0,()1()0,( 5/15/1 xhxxx −+=θ  (17) 

 3. COMPARISON WITH PREVIOUS WORK 
AND PROGRAMME VALIDATION 

A comparison of the surface temperature and local 
skin friction coefficient obtained in the present work 

with ξ=5
1

x  and γ = 0 and obtained by Merkin and 
Pop (1996) and Pozzi and Lupo (1988) have been 
shown in Table-1 and Table-2, respectively. It is 
clearly seen that there is an excellent agreement 
among the respective results.  

Table-1: Comparison of the present numerical results 
of surface temperature with Prandtl number Pr = 
0.733 and γ  = 0 

θ (x,0) 

ξ=5
1

x  
Pozzi and 

Lupo 
(1988) 

Merkin and 
Pop (1996) 

Present 
work 

0.7 0.651 0.651 0.651 

0.8 0.684 0.686 0.687 

0.9 0.708 0.715 0.716 

1.0 0.717 0.741 0.741 

1.1 0.699 0.762 0.763 

1.2 0.640 0.781 0.781 

 
Table-2: Comparison of the present numerical results 
of local skin friction coefficient with Prandtl number 
Pr = 0.733 and γ  = 0 

Cfx 

ξ=5
1

x  
Pozzi and 

Lupo 
(1988) 

Merkin and 
Pop (1996) 

Present 
work 

0.7 0.430 0.430 0.424 

0.8 0.530 0.530 0.529 

0.9 0.635 0.635 0.635 

1.0 0.741 0.745 0.744 

1.1 0.829 0.859 0.860 

1.2 0.817 0.972 0.975 

4.  RESULTS AND DISCUSSION 

The present work is used to analyze the effect of 
thermal conductivity variation due to temperature on 
free convection flow along a vertical flat plate in 
presence of heat conduction and viscous dissipation. 
The values of the Prandtl number are considered to be 
0.733, 1.099, 1.63 and 2.18 that corresponds to air, 
water, glycerin and sulfur dioxide respectively.  

The effect of thermal conductivity variation 
parameter γ on the velocity and the temperature 
profiles within the boundary layer with N = 0.01 and 
Pr = 0.733 are shown in Fig. 2 and Fig. 3, 
respectively. It is seen from Fig. 2 and Fig. 3 that the 
velocity and temperature increase within the boundary 
layer with the increasing value ofγ. It means that the 
velocity boundary layer and the thermal boundary 
layer thickness increase for increasing values of γ. 

The effect of viscous dissipation parameter on the 
velocity and temperature within the boundary layer 
with γ = 0.01 and Pr = 0.733 are shown in Fig. 4 and 
Fig. 5, respectively. It is seen that from Fig. 4 and Fig. 
5 that the velocity and temperature increase within the 
boundary layer with the increasing value of N. 

Fig. 6 and Fig. 7 illustrate the velocity and 
temperature profiles for different values of Prandtl 
number Pr with N = 0.01 and γ  = 0.01. From Fig. 6, it 
can be observed that the velocity decreases as well as 
its position moves toward the interface with the 
increasing Pr. From Fig. 7, it is seen that the 
temperature profiles shift downward with the 
increasing values of Pr. Since the viscosity is the 
resistance to flow of a fluid, so the velocity decreases 
for increasing value of Pr. 

Fig. 8 and Fig. 9 illustrate the effect of the thermal 
conductivity variation parameter on the local skin 
friction coefficient and surface temperature 
distribution against x with N = 0.01 and Pr = 0.733. It 
is also seen that the local skin friction coefficient 
increases for the increasingγ. From Fig. 8, it is seen 
that the surface temperature increases for the 
increasing γ .This is to be expected because the higher 
value for the thermal conductivity variation parameter 
accelerates the fluid flow and increases the 
temperature as mentioned in Fig. 2 and Fig. 3, 
respectively. 

The effect of viscous dissipation parameter on the 
local skin friction coefficient and surface temperature 
distribution against x with γ = 0.01 and Pr = 0.733 are 
shown in Fig. 10 and Fig. 11, respectively. It is 
observed from Fig. 10 that the local skin friction 
coefficient increases for the increasing values of N. 
From Fig. 11 it can be seen that the surface 
temperature distribution increase for increasing values 
of N. 
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Fig. 2: Variation of velocity profiles for different 
values of γ  with  N = 0.01 and Pr = 0.733 
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Fig. 3: Variation of temperature profiles for different 
values of γ  with  N = 0.01 and Pr = 0.733
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Fig. 4: Variation of velocity profiles for different 
values of N  with γ  = 0.01 and Pr = 0.733
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Fig. 5: Variation of temperature profiles for different 
values of N   with γ  = 0.01 and Pr = 0.733 
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Fig. 6: Variation of velocity  profiles for different 
values of Pr with  N = 0.01 and γ  = 0.01 
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Fig. 7: Variation of temperature profiles for different 
values of Pr with  N = 0.01 and γ  = 0.01 
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Fig.8: Variation of skin friction  for different values of 
γ  with  N = 0.01 and Pr = 0.733 
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Fig. 9: Variation of surface temperature  for different 
values of γ  with  N = 0.01 and Pr = 0.733 
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Fig. 10: Variation of skin friction  for different values 
of  N with  γ  = 0.01 and Pr = 0.733 
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Fig. 11: Variation of surface temperature  for different 
values of  N with  γ  = 0.01 and Pr = 0.733
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Fig. 12: Variation of skin friction  for different values 
of Pr   with  N = 0.01 and γ = 0.01 
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Fig. 13: Variation of surface temperature for different 
values of Pr   with  N = 0.01 and γ = 0.01
 

Fig. 12 and Fig. 13 deal with the effect of Prandtl 
number on the local skin friction coefficient and 
surface temperature distribution against x with  N = 
0.01 and γ = 0.01. It can be observed from Fig. 12 that 
the local skin friction coefficient decreases for the 
increasing Pr. From Fig. 13. It can be seen that the 
surface temperature distribution decreases for the 
increasing values of Pr. Since the skin friction 
decreases for increasing value of Pr as a result the 
temperature distribution within the boundary layer 
decreases for increasing Pr and also surface 
temperature decreases for increasing Pr. 

5.  CONCLUSIONS 

In this paper the effect of thermal conductivity 
variation due to temperature and conduction on free 
convection flow along a vertical flat plate with 
viscous dissipation has been studied. From the present 
numerical investigation the following conclusions 
may be drawn:  
• The velocity within the boundary layer 

increases for decreasing values of Prandtl 
number and increasing values of the thermal 
conductivity variation and viscous dissipation 
parameters.  

• The temperature within the boundary layer 
increases for the increasing values of thermal 
conductivity variation parameter and viscous 
dissipation parameter and decreasing values of 
the Prandtl number.  

• The local skin friction co-efficient decreases for 
the increasing values of Prandtl number and 
decreasing values of the thermal conductivity 
variation and viscous dissipation parameters.  

• An increase in the values of the thermal 
conductivity variation parameter, viscous 
dissipation parameter leads to an increase in the 
surface temperature and decreases for the 
increasing values of Prandtl number.  

NOMENCLATURE 

b Plate thickness 
Cfx Local skin friction coefficient 
Cp Specific heat at constant pressure 
f Dimensionless stream function 
g Acceleration due to gravity 
Gr Grashof number 
l Length of the plate 
N Dimensionless viscous dissipation parameter 
P Conjugate conduction parameter 
Pr Prandtl number 
T Temperature of the interface 
Tb Temperature at outside surface of the plate 
Tf Temperature of the fluid  
T∞ Temperature of the ambient fluid 
u  Velocity component in x- direction 
v  Velocity component in y- direction 
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u Dimensionless velocity component in x- 
direction 

v Dimensionless velocity component in y- 
direction 

x  Cartesian co-ordinate along the vertical flat plat             
            in the upward direction  
y  Cartesian co-ordinate normal to the plate 

x Dimensionless Cartesian co-ordinate along the    
           vertical flat plat in the upward direction  
y Dimensionless Cartesian co-ordinate normal  
            to the plate 

Greek Symbols 

β  Co-efficient of thermal expansion 
γ     Thermal conductivity variation parameter 
∇ Vector differential operator 
η Similarity variable 
θ Dimensionless temperature 
θ (x,0) Surface temperature distribution 
κ∞ Thermal conductivity of the ambient fluid 

sκ  Thermal conductivity of the solid 

fκ  Thermal conductivity of the fluid 

μ Viscosity of the fluid 
υ Kinematic viscosity 
ρ Density of the fluid inside the boundary layer 
τw Dimensionless shearing stress    
ψ Dimensionless stream function 
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