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ABSTRACT 
 The effects of conduction and stress work on Magnetohydrodynamic(MHD) free convection flow from an 

isothermal horizontal cylinder along the outer surface from the lower stagnation point to the upper stagnation 
point are investigated. The developed governing equations and the associated boundary conditions are made 
dimensionless using a suitable transformation then the non-dimensional governing equations are solved using 
the implicit finite difference method with Keller box-scheme. Numerical outcomes are found for different 
values of the magnetic parameter, stress work parameter and conjugate conduction parameter. Results for the 
details of the velocity profiles and the temperature distributions as well as the skin friction coefficients and the 
rate of heat transfer are shown graphically and discussed.  
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1. INTRODUCTION 
 Many researchers investigated natural convection 
flow from a horizontal cylinder [1-4] under diverse 
surface boundary conditions (isothermal, uniform heat 
flux and mixed boundary conditions) using different 
mathematical technique. The conjugate heat transfer 
process formed by the interaction between the 
conduction inside the solid and the convection flow 
along the solid surface has a significant importance in 
many practical applications. Gdalevich and Fertman 
[5] studied the conjugate problems of natural 
convection. Miyamoto et al. [6] analysed the effects 
of axial heat conduction in a vertical flat plate on free 
convection heat transfer. Pozzi et al. [7] investigated 
the entire thermo-fluid-dynamic (TFD) field resulting 
from the coupling of natural convection along and 
conduction inside a heated flat plate by means of two 
expansions, regular series and asymptotic expansions. 
Moreover, Kimura and Pop [8] analysed conjugate 
natural convection from a horizontal circular cylinder.  

MHD flow and heat transfer process are now an 
important research area due to its potential application 
in engineering and industrial fields. A considerable 
amount of research has been done in this field. Wilks 
et al. [9] studied MHD free convection about a semi-
infinite vertical plate in a strong cross field. Aldoss et 
al. [10] analysed MHD mixed convection from a 
horizontal circular cylinder. El-Amin [11] found out 
the combined effect of viscous dissipation and Joule 
heating on MHD forced convection over a non-

isothermal horizontal circular cylinder embedded in a 
fluid saturated porous medium. The influence and 
importance of viscous dissipation and stress work 
effects in laminar flows have been examined by 
Gebhart [12]. Later the numerical solution of the 
effect of viscous dissipation and pressure stress work 
in natural convection along a vertical isothermal plate 
studied by Pantokratoras [13] without any 
approximation.  

The objective of the present paper is to obtain the 
numerical result of MHD-conjugate free convection 
flow from an isothermal horizontal circular cylinder 
considering stress work effect with a complete 
discussion. 

2. MATHEMATICAL ANALYSIS 
 Let us consider a steady natural convection 
flow of a viscous incompressible and electrically 
conducting fluid from an isothermal horizontal 
circular cylinder of radius a placed in a fluid of 
uniform temperature T∞. The cylinder has a heated 
inner region of temperature Tb and the thickness of 
the circular cylinder is b with Tb >T∞. A uniform 
magnetic field having strength B0 is acting normal 
to the cylinder surface. The x -axis is taken along 
the circumference of the cylinder measured from the 
lower stagnation point and the y -axis is taken 
normal to the surface.  It is assumed the fluid 
properties to be constant and the induced magnetic 
field is ignored. The effects of stress work in the 
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flow region and conduction from inner surface to 
the outer surface considered in the present study.    

 
Fig. 1: Physical Model and coordinate system 

Under the balance laws of mass, momentum and 
energy and with the help of Boussinesq 
approximation for the body force term in the 
momentum equation, the equations governing this 
boundary-layer natural convection flow can be written 
as: 
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The physical situation of the system suggests the 
following boundary conditions 
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The governing equations and the boundary conditions 
(1)-(4) can be made non-dimensional, using the 
Grashof number ( ) 23 /)( νβ ∞−= TTagGr b  which is 
assumed large and the following non-dimensional 
variables: 
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Where θ  is the dimensionless temperature. The non 
dimensional forms of the equations (1)-(3) are as follows: 
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Where )/()( 2/12
0

2 GrBaM ρνσ= is the magnetic 

parameter, pcag /βε =  is the stress work 

parameter and κμ /pcPr =  is the Prandtl number.  
The boundary conditions (4) can be written as in the 
following dimensionless forms: 
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Where ( ) ( )sf aGrbp κκ /4/1=  is the conjugate 
conduction parameter. The present problem is 
governed by the magnitude of p. The values of p 
depends on b/a, kf /ks and Gr. The ratios b/a and kf /ks 
are less than one where as Gr is large for free 
convection. Therefore the value of p is zero (b=0) or 
greater than zero.  
To solve equation (5)-(7), subject to the boundary 
condition (8), we assume following transformation: 

( )yxfx ,=ψ                                                       (9) 
Where ψ  is the stream function usually defined as 

yu ∂∂= /ψ , xv ∂−∂= /ψ                                  (10) 
Substituting (10) into the equations (5)-(7), the new 
forms of the dimensionless equations (6) and (7) are 
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In the above equations primes denote differentiation 
with respect to y. The corresponding boundary 
conditions (8) take the following form  
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Principle physical quantities, the shearing stress and 
the rate of heat transfer in terms of skin friction 
coefficient fC and Nusselt number Nu respectively 
can be written as: 

)0,(4/1 xfxGrC f ′′=                                       (14) 

)0,(4/1 xGrNu θ−=−                                       (15) 

The results of the velocity profiles and temperature 
distributions can be calculated by the following 
relations respectively. 

  ),( yxfu ′= , ),( yxθθ =                            (16) 
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3. METHOD OF SOLUTION 
 Equation (11) and (12) are solved numerically 
based on the boundary conditions as described in 
equation (13) using one of the most efficient and 
accurate methods known as implicit finite difference 
method with Keller box scheme [15, 16]. 
 
4.  RESULTS AND DISCUSSION 
      The conjugate heat transfer analysis from an 
isothermal horizontal circular cylinder considering 
stress work effect is the main purpose of the present 
work.  The Prandtl number is considered 1.0 for the 
simulation which corresponds to steam.  

A comparison of the local Nusselt number and the 
local skin friction factor obtained in the present work 
with M = 0.0, ε = 0.0, p = 0.0 and Pr = 1.0 and 
obtained by Merkin [1] and Nazar et al. [14] have 
been shown in Tables 1 and 2 respectively. There is 
an excellent agreement among these three results. 

Figs.2 and 3 illustrate the velocity and temperature 
distribution against y for different values of the 
magnetic parameter and the skin friction coefficient 
and the heat transfer rate against x for varying 
magnetic parameter with p =1.0 and ε =0.01 are 
depicted in figs.4 and 5 respectively. The magnetic 
field opposes the fluid flow as a result the peak 
velocity decreases with the increasing M as shown in 
fig. 2. Consequently, the separation of the boundary 
layer occurs earlier and the momentum boundary 
layer becomes thicker. From Fig. 3 it can be observed 
that the increasing value magnetic parameter 
increases temperature within the boundary layer, this 
is expected as there is an interaction with magnetic 
field with fluid flow. Thus, the magnetic parameter 
increases the thickness of the thermal boundary layer. 
Temperature at the interface also varies with different 
M since the conduction is considered within cylinder.  

The Magnetic force opposes the flow, as 
mentioned earlier, and reduces the shear stress at the 
wall as illustrated in Fig. 4. Moreover, the heat 
transfer rate also decreases as temperature difference 
between solid surface and boundary layer region is 
reduced as revealed in Fig. 5. 

The velocity profiles, temperature distributions, 
local skin friction coefficients and the heat transfer 
rate for different values of stress work parameter ε are 
presented in Fig. 6, Fig. 7, Fig. 8 and Fig. 9, 
respectively with p =1.0 and M =0.1. Increasing value 
of the stress work parameter containing gravitational 
force g work against the buoyancy force as a result 
the motion of the fluid motion is decreased as plotted 
in Fig.6. The reduced velocity decelerates fluid flow 
which ultimately decreases the shear stress at the wall 
which is observed from fig.8.  

On the other hand from fig.7 it could be concluded 
that the temperature within the boundary layer 

decreases for increasing stress work parameter. The 
decreased temperature for increasing stress work 
parameter within the boundary layer reduced the 
temperature difference between the boundary layer 
region and the core region eventually increases heat 
transfer rate as illustrated in Fig.9. 

The velocity profiles and temperature distributions 
for different values of conjugate conduction 
parameter p are presented in fig.10 and fig.11, 
respectively with M = 0.1 and ε = 0.01. It is observed 
that both the velocity profile and temperature 
distribution decrease for increasing p. It is expected 
because increase value of conjugate conduction resists 
heat conduction from the solid to the boundary layer.  

Fig.12 and fig.13 depict the skin friction 
coefficient and the heat transfer rate for different 
values of conjugate conduction parameter p, 
respectively. It can be noted from these two figures 
that, both the skin friction coefficient and heat 
transfer rate decrease as the values of conduction 
parameter increase. 

 

5. TABLES AND FIGURES 
 

Table 1: Numerical values of )0,(xθ′− for different 
values of x while Pr =1.0, M = 0.0, ε = 0.0 and p = 
0.0. 

)0,(4/1 xGrNu θ ′−=−  
x Merkin 

[1]
Nazar et 
al. [14] 

Present 

0.0 0.4214 0.4214 0.4216 
π/6 0.4161 0.4161 0.4163 
π/3 0.4007 0.4005 0.4006 
π/2 0.3745 0.3741 0.3741 

2π/3 0.3364 0.3355 0.3355 
5π/6 0.2825 0.2811 0.2811 
π 0.1945 0.1916 0.1912 

 

Table 2: Numerical values of )0,(xfx ′′ for different 
values of x while Pr = 1.0, M = 0.0, ε = 0.0 and p = 
0.0. 

)0,(4/1 xfxGrC f ′′=  

x Merkin [1] Nazar et al. 
[14] 

Present 

0.0 0.0000 0.0000 0.0000 
π/6 0.4151 0.4148 0.4139 
π/3 0.7558 0.7542 0.7528 
π/2 0.9579 0.9545 0.9526 

2π/3 0.9756 0.9698 0.9678 
5π/6 0.7822 0.7740 0.7718 
π 0.3391 0.3265 0.3239 
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Fig.2. Variation of velocity profiles against y for varying of 
M with Pr = 1.0, ε = 0.01 and p =1.0. 
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Fig.3. Variation of temperature distributions against y for 
varying of M with Pr = 1.0, ε = 0.01 and p =1.0. 
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Fig.4. Variation of skin friction coefficients against x for 
varying of M with Pr = 1.0, ε = 0.01 and p=1.0. 
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Fig.5. Variation of rate of heat transfer against x for varying 
of M with Pr = 1.0, ε = 0.01 and p =1.0. 
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Fig.6. Variation of velocity profiles against y for varying of 
ε with Pr = 1.0, M = 0.1 and p = 1.0. 
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Fig.7. Variation of temperature distributions against y for 
varying of ε with Pr = 1.0, M = 0.1 and p = 1.0.  
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Fig.8. Variation of skin friction coefficients against x for 
varying of ε with Pr = 1.0, M = 0.1 and p =1.0.  
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Fig.9. Variation of rate of heat transfer against x for varying 
of ε with Pr = 1.0, M = 0.1 and p =1.0. 
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Fig.10. Variation of velocity profiles against y for varying 
of p with Pr = 1.0, M = 0.1 and ε = 0.01. 
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Fig.11. Variation of temperature distributions against y for 
varying of p with Pr = 1.0, M = 0.1 and ε = 0.01. 
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Fig.12. Variation of skin friction coefficients against x for 
varying of p with Pr = 1.0, M = 0.1 and ε = 0.01. 
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Fig.13. Variation of rate of heat transfer against x for 
varying of Pr with ε = 0.01, M = 0.5 and p = 1.0. 
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6. CONCLUSION 
MHD-conjugate free convection flow from horizontal 

circular cylinder considering stress work effect is studied. 
The effects of the magnetic parameter, Stress work 
parameter and Conjugate conduction parameter are 
analysed on the fluid flow with Prandtl number Pr = 1.0. 
The velocity of the fluid within the boundary layer 
decreases with increasing magnetic parameter, stress work 
parameter and conjugate conduction parameter. The 
temperature distribution increases for increasing magnetic 
parameter while it decreases with increasing stress work 
parameter and conjugate parameter.  The skin friction 
coefficient along the surface decreases for all three 
parameters however the rate of heat transfer increases for 
increasing stress work parameter while it decreases for 
increasing magnetic parameter and conjugate conduction 
parameter. 
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NOMENCLATURE 
 

Symbol Meaning Unit 
a Radius of the outer cylinder (cm)
b Thickness of the cylinder (cm)
B0 Applied magnetic field (N)
Cfx Skin friction coefficient …
cp Specific heat (J/Kg.K)
f Dimensionless stream function  …
g Acceleration due to gravity  (cm/s2) 
M Magnetic parameter …

Nux Local Nusselt number …
p Conjugate conduction parameter …
Pr Prandtl number …
Tb Temperature of the inner cylinder (K)
Tf Temp. at the boundary layer region (K) 

Ts Temp. of the solid of the cylinder (K)
T∞ Temperature of the ambient fluid (K)

vu, Velocity components  (cm/s) 

vu , Dimensionless velocity components … 

yx , Cartesian coordinates  (cm) 

yx , Dimensionless Cartesian coordinates … 

Greek symbols Meaning Unit 
β Co-efficient of thermal expansion (K-1) 
ε Stress work parameter …
ψ Dimensionless stream function  … 
ρ Density of the fluid inside (Kg/m3) 
ν Kinematic viscosity  (m2/s) 
μ Viscosity of the fluid  (N.s/m2) 
θ Dimensionless temperature  … 
σ Electrical conductivity  J/msK 
Kf Thermal conductivity of the fluid       (kW/mK

) 
Ks Thermal conductivity of the solid         (kW/mK

) 
 


