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ABSTRACT 
 

The present work executes a numerical study of magnetohydrodynamic (MHD) free convective flow and heat 
transfer characteristics inside a square cavity with a uniformly heated solid circular block placed at the centre. 
The left wall is at a constant temperature and the rest walls of the cavity are considered to be adiabatic. Finite 
element method based on Galerkin weighted residual approach is used to solve two-dimensional governing 
mass, momentum and energy equations for steady state, natural convection problem in presence of magnetic 
field. Results are presented in terms of streamlines, isotherms and average Nusselt number (Nu) at the heated 
surface for different values of Hartmann number (Ha) and diameter (D) of the block. The results exhibit that the 
flow structure and the heat transfer rate depend significantly on the mentioned parameters. 
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1. INTRODUCTION 
 

Several numerical and experimental methods have 
been developed to investigate cavities with and 
without obstacle because these geometries have 
practical engineering and industrial applications, such 
as in the design of solar collectors, thermal design of 
building, air conditioning, cooling of electronic 
devices, furnaces, lubrication technologies, chemical 
processing equipment, drying technologies etc. Many 
authors have recently studied heat transfer in 
enclosures with partitions, fins and obstacles which 
influence the convection flow phenomenon. Free 
convection flow of an electrically conducting fluid in 
a cavity  in the presence of magnetic field is of special 
technical significance because of its frequent 
occurrence in many industrial applications such as 
geothermal reservoirs, cooling of nuclear reactors, 
thermal insulations and petroleum reservoirs. These 
types of problems also arise in electronic packages, 
micro electronic devices during their operations. 

 
 House et al. [6] studied the effect of a 

centered, square, heat conducting body on natural 
convection in a vertical enclosure. They showed that 
heat transfer across the cavity enhanced or reduced by 
a body with a thermal conductivity ratio less or 
greater than unity. Garandet et al. [4] analyzed the 
buoyancy driven convection in a rectangular 
enclosure with a transverse magnetic field. The 

geometry considered in the numerical study of Oh et 
al. [9], was a cavity with a heat generating conducting 
body. Under these situations, it was shown that the 
flow was driven by a temperature difference across 
the cavity and a temperature difference caused by the 
heat-generating source. Roychowdhury et al. [10] 
analyzed the natural convective flow and heat transfer 
features for a heated cylinder placed in a square 
enclosure with different thermal boundary conditions. 
Natural convection in a horizontal layer of fluid with 
a periodic array of square cylinder in the interior were 
conducted by Ha et al. [5], in which they concluded 
that the transition of the flow from quasi-steady up to 
unsteady convection depends on the presence of 
bodies and aspect ratio effect of the cell. Lee et al. [8] 
considered the problem of natural convection in a 
horizontal enclosure with a square body. Braga and de 
Lemos [1] investigated steady laminar natural 
convection within a square cavity filled with a fixed 
volume of conducting solid material consisting of 
either circular or square obstacles. They used finite 
volume method with a collocated grid to solve 
governing equations. They found that the average 
Nusselt number for cylindrical rods was slightly lower 
than those for square rods. Lee and Ha [7] considered 
a numerical study of natural convection in a 
horizontal enclosure with a conducting body. Natural 
convective heat transfer in square enclosures heated 
from below was investigated by Calcagni et al. [2]. 
Sarris et al. [11] studied MHD natural convection in a 
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laterally and volumetrically heated square cavity. 
They concluded that the usual damping effect of 
increasing Hartmann number was not found to be 
straightforward connected with the resulting flow 
patterns. Roy and Basak [12] analyzed finite element 
method of natural convection flows in a square cavity 
with non-uniformly heated wall(s). 

In the light of the above literature, it has been 
pointed out that there is no significant information 
about MHD free convection processes in an enclosure 
with a heated obstacle. The present study addresses 
the effect of size of block and magnetic field which 
may increase or decrease the heat transfer on natural 
convection in a square cavity. Numerical solutions are 
obtained for different diameter of the obstacle and 
Hartmann number while other parameters such as 
Rayleigh number and Prandtl number are kept fixed. 
The numerical results are presented graphically in 
terms of streamlines and isotherms. Finally the 
average Nusselt number at the heated surface is 
calculated. 

 

2. PHYSICAL CONFIGURATION 
A schematic diagram of the system considered in 

the present study is shown in Figure 1. The system 
consists of a square cavity with sides of length L and a 
heated circular solid block of diameter d is located at 
the centre of the enclosure. A Cartesian co-ordinate 
system is used with origin at the lower left corner of 
the computational domain.  The left wall of the cavity 
is kept at a constant temperature Tc while the other 
walls are considered to be adiabatic. The uniform 
temperature of the obstacle is assumed to be Th. Here 
Tc is less than Th. A magnetic field of strength B0 is 
applied horizontally normal to the side walls.  

 
 

 

 

 

 

 

 

 

       
 

3. MATHEMATICAL FORMULATION  
 
In the present problem, it can be considered that the 

flow is steady, two-dimensional, laminar 

incompressible and there is no viscous dissipation. 
The gravitational force (g) acts in the vertically 
downward direction and radiation effect is neglected. 
The governing equations under Boussinesq 
approximation are as follows 
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where  pCk ρα =  is the thermal diffusivity of the 

fluid. The boundary conditions are 
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The local Nusselt number at the heated circular 

body in the square enclosure is evaluated by the 
following expression in dimensional form as  

khdNulocal /= , where h is the convective heat 
transfer coefficient. 

The above equations are non-dimensionalized by 
using the following dimensionless dependent and 
independent variables 

 
 
 
 
 

After 
substitution of the above variables, equations (1) to 
(4) transformed into the following non-dimensional 
equations  
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Figure 1. Schematic diagram of the problem 
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=rP  is Prandtl number, 
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Ra ch −= is Rayleigh number and Ha is 

Hartmann number which is defined as  
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The corresponding boundary conditions then take 
the following form 

At the inside and on the wall of enclosure fluid 
pressure P = 0 
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The average Nusselt number at the body of the 
enclosure may be expressed as  
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coordinate along the circular surface. 
 

4. NUMERICAL TECHNIQUE 
The numerical procedure used in this work is based 

on the Galerkin weighted residual method of finite 
element formulation. The application of this technique 
is well described by Taylor and Hood [13] and 
Dechaumphai [3]. In this method, the solution domain 
is discretized into finite element meshes, which are 
composed of non-uniform triangular elements. Then 
the nonlinear governing partial differential equations 
(i.e. mass, momentum and energy equations) are 
transferred into a system of integral equations by 
applying Galerkin weighted residual method. The 
integration involved in each term of these equations is 
performed by using Gauss’s quadrature method. The 
nonlinear algebraic equations so obtained are 
modified by imposition of boundary conditions. These 

modified nonlinear equations are transferred into 
linear algebraic equations by using Newton’s method. 
Finally, these linear equations are solved by using 
Triangular Factorization method. 

 
4.1 Grid Refinement Check  

In order to determine the proper grid size for this 
study, a grid independence test is conducted with five 
types of mesh for Ha = 50, Pr = 0.7, Ra = 105 and D = 
0.25. The extreme value of Nu is used as a sensitivity 
measure of the accuracy of the solution and is selected 
as the monitoring variable. Considering both the 
accuracy of numerical values and computational time, 
the present calculations are performed with 39284 
nodes and 5936 elements grid system. 

 

 

5. RESULT AND DISCUSSION 
Effect of the physical parameter (D) and Hartmann 

number (Ha) on heat transfer and fluid flow inside the 
cavity has been analyzed in the present study. Heat 
transfer rate in terms of the average Nusselt number at 
the heated block in the cavity has been also discussed. 
The ranges of D and Ha for this investigation vary 
from 0.15 to 0.5 and 0 to 50 respectively whereas 
other parameters are fixed at Ra = 105 and Pr = 0.7. 

The influence of diameter D for a fixed Ha (= 50) 
on the flow field is depicted in Fig 2 (a). The flow 
with D = 0.15 has been affected by the buoyancy 
force, thus creating two rotating cells. The right top 
one is small which vanishes with increasing D. The 
left one covers almost the whole cavity including the 
block. It contains a small vortex. The size of this 
vortex increases due to the increasing values of D. For 
D = 0.50, the existing recirculation region becomes 
larger and two inner vortices are developed. Fig. 2 (b) 
illustrates the temperature field in the flow region. 
The stratified isothermal lines concentrated near the 
left wall and the heated body. The concentrated 
temperature region near the block becomes denser for 
larger D and consequently the isothermal lines almost 
disappear from the right top portion of the cavity. 

The influence of Hartmann number Ha (from 0 to 
70) on streamlines as well as isotherms for the present 

Table 1.  Grid Sensitivity Check at Ha = 50, Pr = 0.7, 
Ra = 105 and D = 0.25. 

 
Nodes 

(elements)
7432 

(1096) 
11988 
(1784) 

26536 
(3992) 

39284 
(5936) 

79500 
(12080) 

Nu 
0.578491 0.596590 0.598085 0.598592 0.598592

Time (s) 226.265 292.594 388.157 421.328 627.375 
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configuration at Ra = 100000, Pr = 0.7, D = 0.25 has 
been demonstrated in Fig. 3. The flow with Ha = 0 
creates two vortices near both side of the heated body 
due to the buoyancy force. The vortex on the right top 
corner losses its strength for higher Ha and finally 
disappeared. The corresponding isotherm patterns are 
shown in Fig. 3 (b). The high temperature region is 
concentrated near the circular obstacle for Ha = 0. 
The lines become less bend from the left top corner 
because of increasing values of Ha. The concentrated 
temperature region near the heated surface becomes 
thin for larger Ha. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to evaluate how the presence of magnetic 
field and diameter of the obstacle affect the heat 
transfer rate along the heated surface, the average 
Nusselt number is plotted as a function of Hartmann  
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Fig. 2: (a) Streamlines and (b) Isotherms for varying 
of D with Ra = 100000, Ha = 50 and Pr = 0.7 
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Fig. 3: (a) Streamlines and (b) Isotherms for 
varying of Ha with Ra = 105, D = 0.25 and Pr = 0.7 

Fig. 4: Effect of Ha and D on Nu while Ra = 105 
and Pr = 0.7
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number as shown in Fig. 4 for four different diameter 
( D = 0.15, 0.25, 0.35 and 0.5) while Ra = 105

 and Pr 
= 0.7. It is observed that Nu decreases with the 
increasing Ha and increases with the growing D. The 
maximum heat transfer rate is obtained for the lowest 
Ha. This is because the magnetic field retards the 
flow. Also the average Nusselt number is found 
highest for the largest value of D because larger body 
having larger surface is capable to transfer more heat.  

 

6. CONCLUSION 
A finite element method is used to make the present 

investigation for steady-state, incompressible, MHD 
free convection flow in a cavity with a heated body. 
The major conclusions have been drawn as follows: 

The diameter of the body has a significant effect on 
the flow and temperature fields. Buoyancy-induced 
vortex in the streamlines increased and thermal layer 
between the left wall and the heated surface become 
denser for increasing values of D. 

The influence of Magnetic parameter Ha on 
streamlines and isotherms are remarkable. The vortex 
in the streamlines decreased and thermal layer near 
the heated surface becomes thin with increasing 
values of Ha. 

The average Nusselt number Nu at the heated 
surface increases for larger values of Ra and D where 
as it decreases with the increasing values of Ha.  
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