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ABSTRACT

The paper shows pull-type scheduling plans of block assembly lines in a shipyard based on max-plus
approach. The shipyard is assumed to have assembly lines for large-scale/medium-scale blocks as conveyer
lines and also have stockyards for storing blocks. The dynamics of assembly lines and stockyards can be
mathematically modelled in the form of linear system representations using max-plus algebra. This makes it
possible to obtain pull-type scheduling plans by solving model predictive equations. Compared with
conventional scheduling plans, max-plus scheduling plans indicate that the capacity overflow in stockyards
can be avoided and also the workplace limitation on conveyer lines can be observed strictly under the

consideration on assembly order of blocks.
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1. INTRODUCTION

In recent years, the global flow of goods into
BRIC (Brazil, Russia, India, and China) countries
has been accelerated. There are strong demands
from ship owners on bulk carriers to transport
unpackaged bulk cargo such as cereals, coal, ore,
and cement. In Japan, several shipbuilding
companies are trying to improve the productivity of
bulk carriers. In particular, Oshima Shipbuilding is
a shipbuilding company that specializes in the
fabrication of bulk carriers, especially dry cargo
carriers. An air photo of the shipyard is shown in
Photo.1. Although the company has been delivering
annually around 30 ships, the more productivity is
expected. For the purpose, the more elaborate or
systematic scheduling approach is required, that is,
the assembly start times of several hundred blocks
in each production cycle must be determined to
meet the erection dates just in time and not to cause
the overflow in stockyards. It is not so easy to solve
such a scheduling problem using commercial
software packages.

In our previous papers[1],[2], we have shown that
shipbuilding lines consisting of block assembly
conveyers and block stockyards can be
mathematically modelled as state-space
representations using max-plus algebra[3], which
are scheduled based on model predictive control
theory. The scheduling problem is concerned with

how to change the push type to the pull type. In
particular, in order to solve the actual problem, it is
crucial to develop functions of conveyer model and
stock model with functions of serial and parallel
connections  using  Max-Plus  Toolbox on
MATLABTM [4] or VBA in EXCEL.

The paper follows up the same research direction
to demonstrate that max-plus scheduling plans of 28
ships produced in 2009 to 2010 are effectively
obtained. In the chapter 2, some prerequisites are
given. Pull-type scheduling results for assembly
lines for large-scale and medium-scale blocks are
shown in chapter 3 and chapter 4 respectively.

Photo. 1: Oshima Shipbuilding in Japan
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2. PREREQUISITES
2.1 Max-Plus Algebra Based Linear System
Representation [1]
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Figure 1. Production System

All Consider a production system for the k-th
product as shown in Fig.1, where x(k) is the start
time, d(k) is the process time, u(k) is the arrival
time of parts/ materials, and y(k) is the stop time.
Then, the following relation holds:

{x(k) = max{y(k — 1),u(k)} )
y(k) = x(k) + d(k) '

The first equation shows that the start time is
determined as the last stop time or the arrival time
of parts, whichever is later. The second equation is a
trivial relation between the start time and the stop
time. Replacing the max operation and the plus
operation in (1) by @ and ® respectively brings

{x(k) =dk-1D)®x(k—-1)® u(k) @
y(k) = d(k) ® x(k)
Letting A(k — 1) = d(k — 1), B(k) = e, C(k) = d(k),
and omitting ®, (2) is written as
{x(k) =Ak-Dx(k—-1) @ B(k)u(k) @)
y(k) = C(k)x(k)

This is called as a linear system representation
based on max-plus algebra. The first equation is the
state equation and the second equation is the output
equation. In general, x,u,y are vectors of
appropriate dimensions and 4, B,C are matrices of
compatible dimensions.
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Figure 2. Production System of 2-Port Type

Consider the system with 2 kinds of inputs and
outputs as shown in Fig.2. In addition to u(k),y(k)
as defined in the above, v(k) is the available time of
a machine, z(k) is the released time of a machine.
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0) (k)

Ix(k +1) = Atk — Dx(k = 1) @ [By(k)  By(K)] [
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C(k) D(k)

4
It is a key to distinguish the production cycle from
the machine utilization cycle in order to take into
account of resource constraints on capacities or
workplaces.
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2.2 Conveyer Model [2]

A conveyer line is useful to realize CONWIP
(constant works in process), in which m workplaces
are moved with a constant pitch c. Fig.3 shows such
a conveyer mechanism, which is successfully
modelled as a linear system representation in the
following.
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Figure 3. Schematic Diagram of Conveyer Line

For the k-th product, let n be the number of parts
which are fabricated in the conveyer line consisting
of m work-places. Assume that the last ' parts for
the (k-1)-th product occupy the beginning '
workplaces, and also that the last r parts for the k-th
product occupy the beginning r workplaces. We
consider the following four cases.

eCaseln>m(s=m-v.r=n—-s—gmg>1)

e Case2n>m(s=m—

o
rt+a=a>m=++s=>

T —s<m{g=0)=

>y
eCase3n<m(s=m—-r.r=n-s5>0=
rt+s=n<m=rts=3r)

sCased n<m (s=m—r.n<sr=+"+n)

The paper[2] derives the results shown in Fig.4, 5
and 6 corresponding to Case 1, 3 and 4 respectively.
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Figure 4. Max-plus Model of Conveyer Line (Casel)
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Figure 5. Max-plus Model of Conveyer Line (Case3)
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Figure 6. Max-plus Model of Conveyer Line(Case4)
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2.3 Scheduling by Solving Model Predictive
Equation[5]

Assume that a linear system representation of
production system to be scheduled is obtained as
(3). From the state equation, the following relation
is derived.

x(k) = A(k — Dx(k — 1) @ B(k)u(k)
{x(k +1) = A(k)x(k) @ B(k + Du(k + 1)

= A(Ak — Dx(k — 1) - ()
@ A(k)B()ulk) ® Bk + Dulk + 1)
Using the output equation, (5) becomes
y(k) u(k)
y(k+1)| =TU)x(k —1) @ AM) |u(k + 1)|,
Y(-k.) U(.k)
©)]

where in the case of 1-step-ahead prediction,
{F(k) =C(k)Ak — 1) o

A(k) = C(k)B(k)

in the case of 2-step-ahead prediction,

[ CUOAGK—1)
Jm‘) = et + Dadoac - 1)]
| a0 - C()B(K) .

C(k + DA(K)BK) C(k+ 1Bk +1)
®

!

Now let the delivery times be

r(k)
R(k) = |r(k + 1) C)]

It is required to determine the arrival times of parts
U (k) satisfying

R(k) =T(R)x(k —1) @ A(U(K). (10)
In the case that the following condition holds,

R(k) = T(k)x(k — 1), (11)
(10) becomes
R(k) = A(K)U (k). (12)

which does not have the solution U(k) in general.
Therefore, it is required to obtain the maximal
solution U (k) of (12) satisfying

A(U(K) < R(K). (13)

In the case that (11) does not hold, it is impossible to
obtain the appropriate U(k). Then it is necessary to
change (6) itself by reducing the processing times.

3. SCHEDULING OF LARGE-SCALE
BLOCK ASSEMBLY LINES

The half of the shipyard layout considered in the
paper is depicted in Fig.7. There is a dock which can
include four ships. One pair of Ship A/ Ship B and
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another pair of Ship C/ Ship D are constructed
alternately. In order to manage such a dock cycle, it
is necessary to prepare all the blocks until the
erections begin. Because of the short period of
erection, the shipyard has Stockyard #1/ Stockyard
#2 to store blocks of two ships, that is, 120 blocks.
Also it has 8 block assembly lines as conveyers. The
related parameters are shown in Tablel. Each line is
able to fabricate blocks with a constant pitch.

S T

[Assembly Lines of Parallel Blocks |

[Assembly Lines of Curved Blocks |

Sk Stociara s [aies Stockyara =
L N - |

Pre-erection Areas

(

Figure 7. Block Assembly Lines and Stockyards

ShipC

ShipA

Tablel. Parameters on Block Assembly Lines

line# | m c m | line# |m| c | m
1 6 7/8 | 21 5 4 |1 6/4 |10
2 1|78 | 4 6 9 |59 |22
3 1|78 | 4 7 7 | 5/7 |15
4 10 | 7/10 | 34 8 4 | 4/4 |10

m: number of workplaces on conveyer
c: pitch of conveyer

m’: number of stock places assigned to conveyer

Fig.8 shows the actual numbers of large-scale
blocks to be fabricated in 2009 to 2010. There are 7
cycles in which each cycle has around 220 blocks
for four ships, that is, around 60 blocks for one ship.

Figure 8. Numbers of Blocks Fabricated in 2009 to
2010
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For example, the conventional scheduling plan for
Ship C in the Cycle 2 is shown in Fig.9. As for the
other Ship A,B,D in the other Cycle 1,3,4,5,6,7, we
have the same figures. The red bars indicate the
election dates for Ship C. Also the yellow bars, the
blue bars and the green bars indicate pre-election
periods, stock periods and assembly periods
respectively. We can reveal the idling days by
taking minimum stock periods which is necessary
for pre-fitting and painting as in Fig.10. Our
scheduling problem is to reduce the idling days as
many as possible such that the facility constraints on
conveyers and stockyards are satisfied as in Fig.11.

assembl stock
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=

Figure 9. Conventional Scheduling for Ship C

Figure 10. Revealing Idling Days in Fig.9

erection

Figure 11. Max-plus Scheduling for Ship C
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The scheduling plan for Line #1 is made as
follows. So are the other lines. At first, consider all
the blocks for Ships A,B,C,D fabricated in Line #1
in Fig.12-LHS (Left-Hand Side). Then sort them
according to the dates given by subtracting the
minimum stock periods from the pre-erection dates
as shown in Fig.13-LHS. Then make the sorted
scheduling plan based on the max-plus method in
Sec.2.3 as in Fig.13-RHS in which the equation (12)
with the parameters (7) of 1-step-ahead prediction is
solved. Finally obtain the max-plus scheduling plan
in Fig.12-RHS by sorting reversely. Note that the
idling days are reduced from 58 to 14.8.

Conventional (58) = Max-plus (14.8)

i [55] o ]
b 5% e i -
Ship D[~ — s -
i ol e )
= [=w| s [59]
- -
Ship G-~ | =1
[ "o H 1 -
= = [
g i
Ship Bl § :'t?“
G e e .
L == e B
Ship A~ 81 S

Figure 12. Scheduling for Line#1 in Cycle 2
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Figure 13. Sorted Scheduling for Line#1 in Cycle 2
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Figure 14. Counting Blocks Stored in Stockyards
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Conventional Scheduling
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Figure 15. Counting Workplaces Occupied in Line#1

In order to check that the facility constraints on
conveyers and stockyards are satisfied, Fig.14 and
Fig.15 are presented. Fig.14 shows the counting
results of blocks stored in stockyards, and Fig.15
shows the counting results of workplaces occupied
in Line#1. Although there are some violations in the
conventional scheduling, the max-plus scheduling

have no violation.

4, SCHEDULING OF MEDIUM-SCALE
BLOCK ASSEMBLY LINES

The another half of the shipyard layout considered
in the paper is depicted in Fig.16. The large-scale
blocks are made from several medium-scale sub-
blocks which are fabricated in 5 sub-block
assembly lines as conveyers. The related parameters

are shown in Table2.
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Figure 16. Sub-block Assembly Lines & Stockyards

Table2. Parameters on Sub-block Assembly Line

line# m c m'

11 8 4/8 10

12 24 | 724 | 31

13* 10 4/10 13

14 9 4/9 12

15* 10 | 4/10 | 14
* lines with feedback flows
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In Table 2, note that Line #13 and #15 are of
feedback type. This means that some sub-blocks are
utilized to fabricate the other sub-blocks.
Specifically, sub-blocks in Line #13 and #15 are fed
back to Line #15. The scheduling plans for these
lines are made as follows. At first, they are planned
for sub-blocks without feedback as shown in Fig.17
and Fig.18, in which the target dates are taken as the

start dates of the corresponding large-scale blocks.

From these results, the target dates for sub-blocks

fed back in Line #13 and #15 are determined. They

must be pushed in scheduling on Line #15 as shown

in Fig.19.

Conventional L13 (6
E= B =

(4.8)

) = Max-plus L13
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Figure 17. Sorted Pre-Scheduling for Line#13
Conventional L15 (55) = Max-plus L15 (118.5)
= - = E =

Figure 18. Sorted Pre-Scheduli
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The sorting is done for all sub-blocks fabricated
in Line #13 and #15 according to the dates given by
subtracting the minimum stock periods from their
target dates. Fig 20 shows the conventional
scheduling plans for Line#13 and #15, where the
numbers of workplaces occupied in Line #13 and
#15 are larger than the limitations. Fig.21 shows the
max-plus scheduling plans for Line#13 and #15,
where the idling days are increased compared with
the conventional scheduling ones, but the counting
results of sub-blocks stored in stockyards are not so
deteriorated as shown in Fig.22.

Conventional L13 (29)

w

Conventional L15 (55+12+10)
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Figure 20. Conventional Scheduling for Line#13, #15
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Figure 21. Max-plus Scheduling for Line#13 and #15
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Fig.22. Counting Sub-Blocks Stored in Stockyard
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5. CONCLUSION

The contributions of the research at present are
summarized as follows:

1. pull-type scheduling methodology of block
assembly lines and stockyards based on conveyer/
stock models to satisfy facility constraints and the
slack dispatching rule to determine the order of blocks
fabricated.
2. pull-type scheduling methodology of sub-block
assembly lines with the feedback flow, that is, some
sub-blocks are utilized to fabricate the other sub-
blocks

The further research will be concerned with a
multi-cycle scheduling problem which is necessary
for discussing a overlapping problem between two
cycles, and workload balancing problems[6]
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